EXOTIC STEIN FILLINGS WITH ARBITRARY FUNDAMENTAL GROUP
ANAR AKHMEDOV AND BURAK OZBAGCI

ABSTRACT. Let G be a finitely presentable group. We provide an infinite fanaoify
homeomorphic but pairwise non-diffeomorphic, symplebtit non-complex closed four-
manifolds with fundamental grou@ such that each member of the family admits a Lef-
schetz fibration of the same genus over the two-sphere. Asdlany, we also show
the existence of a contact three-manifold which admits iitefijn many homeomorphic but
pairwise non-diffeomorphic Stein fillings such that the damental group of each filling
is isomorphic toG. Moreover, we observe that the contact three-manifold eli®eon-
tactomorphic to the link of some isolated complex surfacgsiarity equipped with its
canonical contact structure.

1. INTRODUCTION

In his ground-breaking work, Donaldson [15] proved thatrgvdosed symplectic 4-
manifold admits a Lefschetz pencil ovs? and Gompf[[2]1] showed that every finitely
presentable grou@ can be realized as the fundamental group of some closed sgtpl
4-manifold. Since a Lefschetz pencil can be turned into adtedtz fibration by blowing up
its base locus—that has no effect on the fundamental grotieafnderlyingt-manifold—
one immediately obtains the existence of a closed sympléctianifold with fundamental
group G, which admits a Lefschetz fibration ovéf. An alternative method of proof of
this result was given iri [10, 27], where a Lefschetz fibrati@s constructed ove§? via
an explicit description of its vanishing cycles on a surfatgenus greater than one, so that
the fundamental group of the total space is isomorphi€G td\Note that the total space of
any Lefschetz fibration ove§? admits a symplectic structure, provided that its fiber genus
is greater than oné [22]. Our first goal here is to prove thiefohg result.

Theorem 1.1.For any finitely presentable grouf, there exists an infinite family of home-
omorphic but pairwise non-diffeomorphic, symplectic bot+tomplex closed-manifolds
with fundamental grougr such that each member of this family admits a Lefschetzifiorat
of the same genus ovs?.
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2 AKHMEDOV AND OZBAGCI

Note that the Lefschetz fibrations we construct are neagssam-holomorphicsince
their total spaces are non-complex. In order to prove Thedrd, we first design an initial
closed symplectid-manifold with fundamental grou@ using some standard techniques
of 4-manifold theory such as Luttinger surgery and symplectio 1 an intricate way so
that the well-known Lefschetz fibrations on the symplectidding blocks involved in the
construction fit together properly to yield a Lefschetz filma (with some extra properties)
on this4-manifold. Then, by performing Fintushel-Stern knot suygeusing an infinite
family of pairwise inequivalent fibered knots of some fixethge—along a homologically
essential torus of square zero in our initial manifold, weaaban infinite family of closed
symplectic4-manifolds. The crux of the matter is that the torus abovérategically em-
bedded relative to the Lefschetz fibration structure on gl 4-manifold so that this
structure is retained after the knot surgery. Moreover, kaansthat thet-manifolds in this
family are all homeomorphic, and we rely on their Seiberdt¥vi invariants, which are
determined by the Alexander polynomials of the fibered knotslistinguish their diffeo-
morphism types pairwise (cf. [18]).

Finally, we use the classification of complex surfaces, dgotg/complex Kodaira di-
mension, and the Seiberg-Witten invariants to show thatetlsgmplectiel-manifolds can
not carry any complex structures, which clearly impliest tha Lefschetz fibrations on
them (including the ones we constructed above) can be hofgnw Note that Parshin
and Arakelov’'s proofs of the Geometric Shafarevich Conjecshow that there are only
finitely many holomorphic Lefschetz fibrations with fixed filggenus and singular set over
S? (cf. [11,[47)).

Next, we prove the existence of a contdatmanifold which admits an infinite family
of homeomorphic but pairwise non-diffeomorphic Steinridjs with fundamental group
G—which is essentially the content of Corolldry 1.2 below—bynoving a regular fiber
and some number of sections from each Lefschetz fibration$¥/given in Theoreni 1]1.
This simple-minded approach has some delicate issuesabdblbe dealt with such as to
show that the fundamental group remains the same afterrti@ved of the aforementioned
pieces from each Lefschetz fibration and that the SeibetteMinvariants are still effective
to distinguish the diffeomorphism types of the remainingisfillings pairwise. The non-
holomorphicity of the Lefschetz fibrations given in Theoig&dl does not play any role in
the proof of Corollary 112, although some other extra propsthey possess turn out to be
essential.

Corollary 1.2. For any finitely presentable grou@, there exists a contac-manifold
which admits infinitely many homeomorphic but pairwise ddfeomorphic Stein fillings
such that the fundamental group of each filling is isomorpbi€G. Moreover, we observe
that the contac8-manifold above is contactomorphic to the link of some isala&omplex
surface singularity equipped with its canonical contactisture.



3

We would like to point out that the woreikoticin the title of the present paper refers to
homeomorphic but non-diffeomorphichich is commonly used amordgmanifold topolo-
gists. The second statement in Corollary 1.2 follows imratsdy from [6, Lemmata 4.1 &
4.2], since the proof presented there for a certain type bé$déibered3-manifolds holds
true verbatim for the case at hand in the present paper. Bydimg the second statement
in Corollary[1.2, we intend to emphasize the fact that algfromany examples of isolated
complex surface singularity links which admit only finitehany Stein/symplectic fillings,
up to diffeomorphism or symplectic deformation equivaksnappeared in the literature
(see, for example, [14, 29, 33,135, 36] 37, 39]), very few gxlamof singularity links with
infinitely many Stein fillings are known.

Note that Corollary 1]2 may be considered as a vast genatialivof [5, Theorem 1.1]
and [6, Theorem 5.3], where the first statement was proved:fer 1 in the former and
both statements were proved fare {Z®Z,,| m € N } in the latter. The method of proof
in the present paper, however, is very similar to the onesl@bove.

We would like to point out that none of the previous consinr of Lefschetz fibrations
in the literature could be effectively utilized instead afra'heoreni 1J1 to prove Corol-
lary[I.2. For example, the Lefschetz fibrations ogérdescribed in[[27] do not carry the
homologically essential tori we need for producing exotipies using the knot surgery op-
eration. This is due to the fact that the examples in [27] &taioed by performing many
symplectic sums along higher genus surfaces, in contrasietexamples in the present
article, where we perforrmanly twosymplectic sums. Moreover, the existencdérofmolog-
ically trivial vanishing cyclesn those Lefschetz fibrations rules out the Steinness of the
remaining piece after the removal of some sections and darefijoer.

The direct approach using Donaldson’s Lefschetz pencildavoot work for us either,
since any of the sections of a Lefschetz fibration obtaineol@ying up the base locus of a
Lefschetz pencil has self-intersectieri and therefore is not suitable for our construction
of exotic Stein fillings of ansolated complex surface singularity.

Note that the total space of any of the Lefschetz fibratioasvite construct in this paper
is symplectically minimal, which follows from Usher’s themn in [46] (see also [13]), and
hasb; > 2. The casé] = 1 has been studied separately [in [9]. The examples there,
however, do not necessarily yield Stein fillings.

Outline of the paper:In Section 2, we briefly review Luttinger surgery, knot sugge
and symplectic sum. In Sectidn 3, we discuss a positive Delist factorization of a
certain involution on a closed orientable surface, whicdd#eto the description of a set
of Lefschetz fibrations that we use in our constructions. éat®n[4, using Luttinger
surgery and symplectic sum we design the aforementionéidliciosed symplectiel-
manifold withm, = G andb] > 2 which admits a Lefschetz fibration ovéF that has
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some additional features. In Sectigh 5, we prove Thedreinvihile in Sectior b, we
prove Corollary 1.P.

2. LUTTINGER SURGERY SYMPLECTIC SUM AND KNOT SURGERY

Luttinger surgery (cf.[[31],.112]), symplectic sum (cf._J@Bnd knot surgery (cf.[[18])
are the fundamental tools for constructing exotic smoatictiires ont-manifolds. In this
section, we briefly recall these operations.

2.1. Luttinger surgery. Let L be a Lagrangian torus embedded in a closed symplectic
4-manifold (X, w). It follows that L has a trivial normal bundle. In addition, by the La-
grangian neighborhood theorem of Weinstein, a tubularhimchood/ L of L in X can be
identifiedsymplecticallywith a neighborhood of the zero-section in the cotangentligun
T*L ~ T x R? with its standard symplectic structure. This identificatgives a framing

to L, which is called the Lagrangian framing. Lebe any simple closed curve dn The
Lagrangian framing determines uniquely, up to homotopyshpoff ofy in (X — vL),
which we denote again by.

Definition 2.1. For any integefn, the (L, v, m) Luttinger surgeryon X is defined as
X(L,y,m) = (X —vL) Uy (S" x §' x D?),

where, for a meridiap;, of L, the gluing maps : S* x S' x 9D? — 9(X — vL) satisfies
¢([0D?]) = [pr] + m[y] in Hi(O(X — vL).

Note that form = 0, the Luttinger surgery is trivial, which means thatZ, v, 0) = X.

Remark 2.2. A salient feature of Luttinger surgery is that it can be doymglectically,
i.e., the symplectic forrw on X — v L can be extended to a symplectic form 8L, v, m)
as shown in[[12].

Lemma 2.3. The fundamental group,(X(L,~,m)) is obtained as the quotient of the
group 7 (X — vL) by the normal subgroup generated by the produgt™. Moreover,
we haver (X) = o(X(L,~,m)), andx(X) = x(X(L,~,m)), wherec and x denote the
signature and the Euler characteristic, respectively.

Proof. The result about the fundamental group follows from thee3eifan Kampen’s the-
orem. The fact that the signature is preserved under Lutisgrgery is a consequence of
the Novikov additivity. The result about the Euler charaste is evident. O

2.2. Symplectic sum. Suppose thak’; and X, are closed symplectic four manifolds. For
eachi = 1, 2, let F; be a2-dimensional, smooth, closed, connected symplectic snlfoid

of X;. Assume tha# and F;, have the same genus afid|* + [F»)> = 0. LetvF; denote
the disk normal bundle af; in Xj.
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Definition 2.4. For any orientation-reversing diffeomorphism: ovF, — OvF; that is
lifted from an orientation-preserving diffeomorphismrrd to F3, thesymplectic surof
X; and X5 is defined as the closedmanifold

Xl#wXQ = (X1 - I/Fl) U¢ (X2 - I/Fg).

This gluing is called a symplectic sum since there is a nhiswéopy class of symplectic
structures onX; #, X, extending the symplectic structures &qn — vF; and X, — vF; as
shown in [21].

2.3. Knot surgery. Let K be an arbitrary knot it$® and letN (K') denote a tubular neigh-
borhood of K C S3. Suppose thdf is an embedded torus with a tubular neighborhood
T x D? in some smooth-manifold X. Let X denote thet-manifold obtained by glu-
ing X \ (T x D?) with (S* x (S*\ N(K)) along their boundaries, where we identify the
boundary of a disk normal t& with a longitude of N(K). The4-manifold X is said to

be obtained fromX by a Fintushel-Stern knot surgerty [18].

3. POSITIVE FACTORIZATIONS OF SOME INVOLUTIONS ON SURFACES

In this section, we briefly introduce a set of Lefschetz filorzt overS?, which will
be one of the main ingredients in our proofs. It is a standacad that an expression of
the identity in the mapping class grodpap(X) of some closed orientable surfakeas a
product of positive (a.k.a. right-handed) Dehn twists glsome simple closed curves on
¥ induces a Lefschetz fibration ovéf. Here the regular fiber of the Lefschetz fibration is
the surface: at hand, while the simple closed curves are the vanishiniggyc

An obvious factorization of the identity ifap(X) can be obtained by taking the square
of a factorization of some involution od. Consider, for example, the involutighon the
surfaceX,,,,_1 of genus2g + n — 1 depicted in Figuré]l. The involutighcan be viewed
as a combination of the hyperelliptic involution on the kontal surface of genus — 1
with a “vertical” involution on a surface of gendg. Both the hyperelliptic and the vertical
involution of surfaces have well-known explicit positivectorizations in the respective
mapping class groups. When= 1, a positive factorization of the vertical involutighis
givenin [32] forg = 1 and in [27] forg > 2.

Since the involutiory in Figure[l is obtained as a combination of two involutions in
the mapping class group with well-known positive factdiiimas, a factorization of, in
principle, should be a combination of those factorizatiohs a matter of fact, an explicit
factorization of6 was worked out in[[23, Theorem 2.0.1]. The method of proofhis t
unpublished manuscript is a straightforward applicatibthe Alexander’s trick. Namely,
one first fixes a finite set of curves whose complement is a diske surface and shows
that the image of each curve under the involution and (themiatl) positive factorization
is isotopic.
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€on—4

FIGURE 1. The involutiory on the surfacél,,,,—

The positive factorization of in [23] was also verified employing rather conceptual
methods in[[4/7, Theorem 5], up to Hurwitz equivalence. Inhbgapers, it was shown
that @ can be expressed as a productief+ 2g — 2 positive Dehn twists. Let (n, g)
denote the total space of the Lefschetz fibration definetby 1 € Map(Xagin-1). It
follows that the4-manifold Y (n, g) has a genugg + n — 1 Lefschetz fibration ovef?
with s = 8n + 4¢ — 4 singular fibers, all of which are induced by nonseparatingsrang
cycles.

The Euler characteristic of the symplectiananifold Y (n, g) can be easily computed
using the following formula:

X(Y (1, 9)) = X(S*)x(B2g4n-1) +5=2(2—2(n+2g — 1)) +8n+4g —4 = dn —dg +4.

The signaturer (Y (n, g)) was calculated to be 4n in [47, Theorem 1].
The Lefschetz fibration defined = 1 can also be described with a different point
of view as follows. Take a double branched coverS8fx ¥, along the union on
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disjoint copies of5? x {pt} and two disjoint copies ofpt} x ¥, as illustrated in Figurel2.
The resulting branched cover hés singular points corresponding to the number of the
intersection points of theén horizontal spheres and the two vertical gegusurfaces in
the branch set. By desingularizing thelsesingular points, one obtains the sympledtic
manifold S? x ¥, #4nC P2. Note that by projecting onto th? factor we obtain a (vertical)
fibration overS? whose generic fiber is the double cover3gf, branched oven points.
Thus, a generic fiber of the vertical fibration has gemu=2g — 1. Furthermore, each of the
two singular fibers of the vertical fibration, arising fromatwisjoint copies o2, x {pt},
can be perturbed inttn + 2g — 2 Lefschetz type singular fibers, which is equivalent to the
positive factorization of the involutiofi, as shown in the proof of [47, Theorem 27]. As
an immediate corollary one obtains that thenanifold Y (n, g) is in fact diffeomorphic to

52 x %, #4nCP2.
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FIGURE 2. The branched cover description of the Lefschetz fibration

4. LEFSCHETZ FIBRATIONS WITH ARBITRARY FUNDAMENTAL GROUP

In this section, for each finitely presentable group G, westwtt a closed symplectic
4-manifold withm; = G andbj > 2 which admits a Lefschetz fibration ové? having
some additional properties (see Proposition 4.7). Pattsi®Eection overlaps with certain
parts of [9], where the cadg = 1 has been studied.
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4.1. Construction for a finitely generated free group. In the following, we first explain
our construction for the case of a finitely generated freeugrof arbitrary rankg > 1,
before we deal with the general case.

The product:, x 77 admits a symplectic structure, wheXg is a closed symplectic
genusg surface and™ is a symplectic torus. Suppose tHat, b; : 1 < i < g} is the set
of standard generators of (3,) and{c, d} is the set of standard generatorsmf7?). Let
{pi,qi > 0:1 < i < g} be a set of nonnegative integers andget (pi,...,p,) and
q= <Q17---7QQ)-

We denote byl/,(p, ¢) the symplectici-manifold obtained by performing a Luttinger
surgery on the symplectiemanifold X, x 72 along each of theg Lagrangian tori with
the associated framings belonging to the set

L={(a,x a,—p), (0 x " b, —q;) |1 <i<g}

The reader can consult/[8, Figure 1] for more on the prime anbkk prime notation,
where these loops are explicitly depicted. Hetdpr example, is a free simple loop on the
surface, parallel to the generatar; of m;(3,). Thereforea; x ¢’ is a Lagrangian torus
in X, x T?, along which a Luttinger surgery is possible. Note that g\ertinger surgery
in a symplectici-manifold is determined by a triple: a Lagrangian torus,napse closed
curve on that torus and an integer (see Sectian 2.1).

This family of symplectici-manifolds)/,(p, ) has been studied inl[8] (see the discus-
sion on pages 579-580, and 592-593). For further detailsefee the reader to [8] and
references therein. The proof of the following result faléofrom the Example in[12, page
189].

Lemma 4.1. The4-manifold M, (p, ) admits a locally trivial genug fibration over7=.
Proof. The (a; x ,al, —p;) or (b, x ", b}, —q;) Luttinger surgery in the trivial bundle
3, x T? preserves the fibration structure oZ&rintroducing a monodromy of the fibér,

along the curve’ and¢”’, respectively, in the base. Depending on the type of theesyrg
the monodromy is eithelt, )? or (t,,)%, wheret denotes a Dehn twist. O

The proof of the next result—which essentially follows fraisemmd2.8—can be found
in [8].

Lemma 4.2. The fundamental group dt/,(p, g) is generated by, b; (i = 1,...,¢) and
¢, d, with the following relations:

)Y [b;td = aP) [a;t,d] =b¥, forall1 <i<g,
) [as, ] =1, [b,c]=1,foralll1<i<yg,
) [
) [e,d]
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The torus{pt} x T% C X, x T? induces a toru¥, which is a section of the fibration in
Lemmal4.1, with trivial normal bundle in/,(p,g). On the other hand, a regular fiber of
the elliptic fibration on the complex surfaé&n) is also a torus of square zero.

Definition 4.3. Let X, ,,(p,q) denote the symplectic sum af,(p,q) along the torusT
with the elliptic surfaceF’(n) along a regular elliptic fiber.

Lemma 4.4. The symplectid-manifold X, ,,(p, ) admits a genugg + n — 1 Lefschetz
fibration overS? with at least4n pairwise disjoint sphere sections of self intersectigh
Moreover, X, ,,(p, ¢) contains a homologically essential embedded torus of sgaaro
disjoint from these sections which intersects each fibem@fefschetz fibration twice.

Proof. By definition, X, ,,(p, ) is obtained as the symplectic sum of the complex surface
E(n) along a regular elliptic fiber with the symplectiemanifold M, (p, g) along the sec-
tion T defined above.

Since the complex surfadé(n) can be obtained (see [22, Section 7.3]) as a desingular-
ization of the branched double cover ®f x S? with the branching set beingcopies of
{pt} x S? and2n copies ofS? x {pt}, it admits a genus — 1 fibration overS? as well as
an elliptic fibration overS?, both of which are obtained by the projection®f x S? onto
one of theS? factors. In fact, both fibrations can be realized as Lefstfiltations and a
regular fiber of the elliptic fibration of'(n) intersects every genus— 1 fiber of the other
Lefschetz fibration twice.

Consequently, when performing the symplectic suri'ot) along a regular elliptic fiber
with the surface bundl&/,(p, g) along the sectioff, the fibration structures in both pieces
can be glued together to yield a gerius+ n — 1 Lefschetz fibration onX, ,,(p, g) over
S?. The reason that this works is that if one composes the giofed/,(p,q) — 7>
with a hyperelliptic quotienf™® — 52, one obtains a fibration af/,(p, g) over S?, with
disconnected generic fiber and four singular fibers, sudtthledfibration near the torus
is equivalent to the fibration of'(n) near a regular fiber.

Moreover, we observe that a sphere section of the genusl Lefschetz fibration
E(n) — S%induce a section of the geng + n — 1 Lefschetz fibrationX,, ,,(p,7) — S*.
Since E(n) can be realized as a fiber sum of two copieCét?# (4n + 1)CP? along a
genusn — 1 surface (see [22, Remark 7.3.9(b)]), and since there is schetz fibration
CP?#(4n+1)CP? — S? with at leastin pairwise disjoint sphere sections of self intersec-
tion —1 (cf. [26,/43/44]), we conclude that the genus 1 Lefschetz fibrationf (n) — S?
has at leastn pairwise disjoint sphere sections of self intersectian

Furthermore, the homologically essential embedded tbrofssquare zero X, ,,(p, q)
which is disjoint from these sections intersects each fibéneLefschetz fibration twice.

O
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Lemma 4.5. The fundamental group of the symplectimanifold X, ,,(p, 7) is generated
by the sefa;, b, : 1 <i < g} subject to the relations:

(1) aﬁh — ng? =1, for all 1 <1< g, and
(2) II9_,[a;, b] = 1.

7=1

Proof. Choose a base pointond(vT) such thatr, (M, (p,g)\vT, ) is normally generated
by a;,b; i = 1,---,g) andc,d. Notice that the symplectic toruB is disjoint from the
neighborhoods o2g Lagrangian tori in£ above. Consequently, all but relation (3) in
Lemma4.2 holds inr; (M, (p,q) \ vT). The productas, bi][az, bs] - - - [agy, b,] is NO longer
trivial, and it represents a meridian @fin 7; (A, (p,g) \ vT). Now since the complement
of a neighborhood of a regular fiber in the elliptic fibratiom B(n) is simply connected,
after the fiber sum which by definition identifies the regulbefiwith the sectiorT, we
havec = d = 1 in the fundamental group ok, ,(p,g). Hence we obtain the desired
presentation forr, (X, ,(P,q)). O

Corollary 4.6. The fundamental group of, ,,((1,1,...,1),(0,0,...,0)) is a free group
rank g.

Proof. The result follows immediately from Lemnha 4.5, by setting= 1 andg; = 0, for
alll1 < <g. O

To summarize, combining Lemrha 4.4 with Corollaryl4.6, weagbt closed symplectic
4-manifold whose fundamental group is a free group of rankvhich has the desired
properties we listed at the beginning of this section.

4.2. Construction for an arbitrary finitely presentable group. In this section, we give
a construction for the general case. I(étbe a finitely presentable group with a given
presentationxy, ...,z | r1,...,7s). Suppose thak, is a closed orientable surface of
genusk and let{a;,b; : 1 < j < k} denote the set of standard generators,0E;). Since
r; IS a word in the generators, . . ., z;, there is a smooth immersed oriented cirgl®n

F representing the corresponding wordrif{%;), obtained by replacing eaal} with b;.
We may choose the loop (up to homotopy) such that at each self-intersection poim
two segments of; intersect transversely. In order to carry out some Luttisgegeries we
have in mind, we first need to resolve the self-intersectmintg of v, by a trick that was
initially introduced in [10], and refined further in [27]. ke following, we will use the
version discussed in [27].

For each self-intersection point of the immersed cuyvehere two segments intersect
locally, we glue a-handle tof” and modifyy; so that one of the intersecting segments goes
through the handle while the other remains under it. The frembicurve on the new surface
will be denoted byy; as well. Notice that we only need a finite number of such handle
to resolve all the self-intersections 9f. After these handle additions, the surfacgis
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changed to a surfacg, of genusg > k so that each (modified); is now an embedded
curve on,.

Let{a;,b; : 1 < j < g} represent the set of standard generators f,), extending the
standard generators of (X;). We perform Luttinger surgeries on the standard symplectic
4-manifold, x 7%, along the following Lagrangian tori

{(a; x ¢, a;, —1), (b, x " b, —1), k+1<i<g}.

Moreover, just as in the free group case, we perform Luttirsgegeries ort, x 72
along the2k Lagrangian tori belonging to the set

{(a x ¢, al,—=1), (b, x " b;,0) |1 <i<k}.

Yt B )

Let M (G) denote the symplectit-manifold obtained by the total @y Luttinger surg-
eries onX, x T2. Notice thatk of these Luttinger surgeries have a surgery coeffidient
As in Sectiori 4.11, we take a symplectic sum\df ) along the toru§ descending from
{pt} x T* with E(n) along a regular elliptic fiber (here we assumg 2 for reasons which
will be clear in Sectiof6), and denote the resulting symteemanifold byY,,(G). Note
thatm (Y, (G)) is a free group of rank, by Lemmd.4.b.

Since aregular fiber of a genus- 1 hyperelliptic Lefschetz fibration oA (n) intersects
aregular fiber of an elliptic fibration ofi(n) at two pointsY,,(G) admits a genugg+n—1
Lefschetz fibration ove$?, just as we explained in the proof of Lemimal4.4.

Note thatY,,(G) can also be constructed as the twisted fiber sum of two copitseo
genus2g + n — 1 Lefschetz fibration o' (n, g) = S? x X,#4nCP? overS?, that we dis-
cussed in Sectidd 3. This essentially follows from the fhat the symplectic sum df(n)
along a regular elliptic fiber with, x 72 along the square zero torliss diffeomorphic to
the untwisted fiber sum of two copies of the gefiys-n — 1 fibration onS? x X, #4nC P2,
which in turn follows from the branched cover descriptiortteése4-manifolds (cf. [19,
page 1466]). When performing the Luttinger surgeries, theng diffeomorphism of the
genus2g + n — 1 fibration, which is an identity map initially, turns into tipeoduct of a
certain Dehn twists. This gluing diffeomorphispncan be described explicitly using the
curves along which we perform our Luttinger surgeriess t,, - - - ta, ta,  to, ., =+ ta,to,-
Here we view the Dehn twistg.’s andt;,’s as self-diffeomorphisms of the gereig+n —1
surface by extending them from the gemusurface by the identity. Note that an analogues
construction is given ir [48].

The global monodromy of the gen@s + n — 1 Lefschetz fibration oY, (G) is given
by the following word:62¢~'6%¢ = 1, where a positive factorizatiohe Map(Xgyin—1)
is described in Sectidn 3. Here, we would like to point out tha global monodromy
consists of Dehn twists in the factorization@fand their images by the diffeomorphism
¢, whose particular factorization above has nothing to da e vanishing cycles.
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In addition to applying the above Luttinger surgeries on“gtandard” tori, we apply
more surgeries along tori:

{(’71, X C/,/7/7z{7 _1)7 1< < 5}~

Recall thaty; is the simple closed curve obtained by resolving the sédrgection points
of the immersed curve which comes from the presentation of the graugiven at the first
paragraph of Sectidn 4.2, wherés the number of relations. Note that these Lagrangian tori
descend fromd/(G) and survive int,, (G) after the fiber sum witti’(n). Let X, (G) denote
the symplecticl-manifold obtained by performing these Luttinger surgeiteY,,(G).

In the fundamental group of,,(G) we have the following relations—which we explain
below—that come from the last set of Luttinger surgeries,

[612117 d] =M.y [61;17 d] =s
wheree;, x d is a dual torus ofy, x ¢”. Here each, (see Figuréll) is a carefully chosen
disjoint vanishing cycle of the genwg + n — 1 fibration (see Sectionl 3) coming from
the hyperelliptic part of the involutiofi, and eachy; is modified so that it intersects the
vanishing cycleg;, in a single point. Since after fiber summing wih{n), we havec =
d = 1, it follows thatm (X,,(G)) admits a presentation with generatdes, b, : 1 < i < g}
and relations:

ap=1,...,ay, =1,
bk+1:17...7bg:17
yr=1,...,7=1.

In other words;m(X,,(G)) = (by,...,bx | 71,--.,7s), Which is indeed isomorphic to
the given grougz. The above presentation follows from the following fact¥c(=d = 1
in 1 (X (@)), (ii) for each torusl; =~/ x ¢” there is at least one vanishing cyele of the
genus2g + n — 1 Lefschetz fibration orY,,(G) (see Sectiof3) such that intersects,
precisely at one point, ang does not intersect with,; for anyj # 1.

After the s Luttinger surgeries on torj; x ¢, we obtain the following set of relations:

[e,;ll, d=v,..., [e,;l, d] = 7s.
Sinceey, = 1, andd = 1 in the fundamental groups of,(G) and X,,(G), because,
are the vanishing cycles of the geritis+ n — 1 fibrations on them, we obtaip = 1 for
anyi. We can easily write down the global monodromy of the gelwus n — 1 Lefschetz
fibration onX,(G): 62¢''62¢' = 1, Whereg' = t4, - - tu,ta, topss *  tagtogtyr -ty I
conclusion, we proved the main goal of this section which tagesdelow.

Proposition 4.7. Let G be any finitely presentable group. Then for any integer 1, there
exists a closed symplectiemanifold X, (G) satisfying the following properties:
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(1) The fundamental group of,,(G) is isomorphic taG.

(2) There exists a Lefschetz fibratiof),(G) — S? that admits at leastin pairwise
disjoint sphere sections of self intersectien.

(3) There is a homologically essential embedded tdtus X,,(G) of square zero such
that T is disjoint from the sections of the Lefschetz fibratiofRip and it intersects
each fiber twice.

(4) bf (X.(G)) > 1.

Note that (4) in Proposition 4.7 simply follows from our aswtionn > 1, using the
fact thatby (F(n)) = 2n — 1. The genus of the Lefschetz fibration,(G) — S? is
2g +n — 1, whereg depends on the presentation(ofis explained at the second paragraph
of Sectior 4..

Remark 4.8. Our construction for = 1 yields a genugg Lefschetz fibrations ove$?
with b = 1 andc? = 0. For the reader’s convenience, we discuss a few cases below

(1) By settingp; = £1 andg; = £1 in Subsection 4]1, we see that the fundamental
group of X, 1 (p, ) is a trivial group. Simple computation shows th&iX, ;(p,q)) =
X(E(1)) = 12, o((X,1(P, 7)) = o(E(1)) = -8, and consequently we have
by (X,1(p,9)) = by (E(1)) = 1. In fact, the4-manifold X, ; (p,q) in this special
case is an exotic copy @ (1) = CP>*#9CP2.

(2) By settingg = 1 and letting|p| > 1 and|q| > 1 vary, we see that the funda-
mental group ofX, ;(p,q) is generated by two elemen{s, b} subject to the re-
lations: a? = 1,07 = 1, and[a,b] = 1, thusm(X,1(p,9)) = Z, X Z,. Since
b1(X11(7,7)) = 0, we similarly haveb; (X1,1(p, 7)) = b; (E(1)) = 1.

(3) By settingg = 1, p = 0, andg = +m for any integerm > 1, we obtain the
Lefschetz fibration with the fundamental grodpx Z,,. Note that these examples
havey = 12,0 = —8,¢? =0, andbj = b3 (E(1)) +1 = 2.

5. NON-HOLOMORPHIC LEFSCHETZ FIBRATIONS WITH ARBITRARY FUNDAMENTAL
GROUP

In this section we give a proof of Theorém11.1.

Theorem 1.1.For any finitely presentable groug, there exists an infinite family of home-
omorphic but pairwise non-diffeomorphic, symplectic boi+tomplex closed-manifolds
with fundamental groupg: such that each member of this family admits a Lefschetz fibra-
tion of the same genus ovér.

Proof. The statementin Theordm 1.1 follows by combining Propos#.6 and Lemma’.4.
L]
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In the following, we useX,,(G) to denote thel-manifold given in Proposition 4.7, and
for any knotK C S3, we useX,, (G)x to denote thei-manifold obtained fromX,, (G) by
performing knot surgery along the torlisspecified in Proposition 4.7, using the kgt
We begin with some preliminary results.

Lemma 5.1. For any knotK, we haver, (X,,(G)x) = G.

Proof. We know thatr, (X, (G)) = G by Proposition 4]7. Then the result follows from
the Seifert-Van Kampen'’s theorem, since all the loops oridhesT given above are null-
homotopic inX,,(G), and the homology class of a longitude of the khbin 53 \ v(K) is
trivial. O

Lemma 5.2. For any knotX, the4-manifold X,,(G) . is homeomorphic t&,,(G).

Proof. Recall that there are three disjoint copies of the Gompfeiugln) (cf. [20]) in
E(n) (for n > 2) and only one of them is used during the constructiolXgfG), and
the remaining two descend t§,(G). Using any one of the nuclei that was not used
to obtain X,,(G), we get the following decompositioX,,(G) = N(n) U W(G,n, g),
where W (G, n, g) is diffeomorphic to the Milnor fiber of the singularity whosiek is
the Brieskorn homolog$-sphereX(2, 3, 6n — 1). Consequently, we see that, (&), con-
tains a copy of an exotic nucleus(n), and we haveX,,(G),, = N(n)x U W(G,n,g).
Since the boundary oV (n) is the Brieskorn homologg-sphere, the argument which
was elaborated in details in the last paragraph of the prbf,dProposition 5.4] shows
that for any choice of{, the4-manifold X,,(G) . is homeomorphic td, (G) such that this
homeomorphism is the identity di" (G, n, g). Note that there is still a cusp neighborhood
in the third nucleus. Similar arguments were used in [40][@hd

O

Lemma 5.3. For any fibered knof, the smooth-manifold X, (G) . is symplectic.

Proof. This is indeed a well-known result [18, page 368]. It simpldws by the fact
that the knot surgery-manifold X,,(G) - can be obtained as a symplectic fiber sum of the
symplectic manifoldsX,,(G) and M x S* along the symplectic torus, where My is
obtained by)-framed surgery o C S°. O

Lemma 5.4. For any fibered knotX, there exists a Lefschetz fibratioq, (G)x — S?
induced from the Lefschetz fibratiof, (G) — S* described in Proposition4.7.

Proof. This follows from the fact that the tordB along which we perform knot surgery
intersects each fiber of the Lefschetz fibratiop(G) — S? twice. The genugg +n — 1
fiber of the Lefschetz fibratio,,(G) — S? extends to become a genig+ 2h +n — 1
fiber of the induced Lefschetz fibratiof, (G) x — S? by gluing in two copies of the genus

h fiber surface of the knak™ along the two punctures obtained by the removal of a tubular
neighborhood off. For the details of this classical trick we refer(to[19]. O
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Lemma 5.5. The symplectic Kodaira dimensiafi(X,,(G)) is equal tol.

Proof. First of all, since the Luttinger surgery preserves the dgotic Kodaira dimension
x° [24], we conclude that*(X,,(G)) = «*(Y,(G)). Note thatY,,(G) is obtained as a fiber
sum of M (G) with E(n) andM (G) is obtained front, x T2 by Luttinger surgeries. Thus,
k*(Xn(G)) = k*(E(n, g)), where the Kahler surfacB(n, ¢) is by definition the fiber sum
E(n)#4>, x T?. But according to[[16, page 350], we havg E(n,g)) = 1. Here we
assume that > 2 andg > 1. O

Proposition 5.6. There exists an infinite familf = {K; : i € N} of fibered knots of
some fixed genus such th@X,,(G)k, : K; € F} consists of homeomorphic, pairwise
non-diffeomorphic, symplectic but non-complex smootsedd-manifolds.

Proof. The following facts are some of the main ingredients of owojhr

(a) The complex Kodaira dimensiart is equal to the symplectic Kodaira dimension
for a smootht-manifold which admits a symplectic structure as well asraglex structure,
where these structures are not necessarily required torbpatile [16, Theorem 1.1].

(b) A complex surface witi" = 1 is properly elliptic.

(c) The diffeomorphism type of an elliptic complex surfacéhmon-cyclic fundamental
group is determined by its topological type [45] (see alsy Remark 8.3.13)).

(d) The diffeomorphism type of a complex elliptic surfa€with x(S) > 0 and|r,(5)| =
oo is determined by its fundamental group (cf.[[22, Theoreml2]3 and [45]).

Fix any integerh, > 2. Suppose thaf;,, = {K; : i € N} is any infinite family of genus
h fibered knots inS? with pairwise distinct Alexander polynomials. Such famdliof knots
exist by the work of T. Kanenobu [25].

Recall thatr, (X,,(G)) = G by Proposition 4J7. The infinite family.X,,(G)k, : K; €
Jn} consists of closed symplectiemanifolds withr; = G, which are all homeomorphic
to X,,(G). These assertions indeed follow from Lemniata [5.1-5.3. Mae we observe
that the members of this family are pairwise non-diffeonmacpThis is because of the fact
that the Seiberg-Witten invariant of,,(G) ., is determined by the Alexander polynomial
of K; (cf. [18]). Although X, (G) is not simply-connected, this formula still works for
knot surgery onX,,(G), sinceb; (X,,(G)) > 1 and X,,(G) has non-trivial SW-invariants
which is guaranteed by its symplectic structure. To finish pnoof of Propositiof 516,
we show that at most finitely many of the symplectienanifolds in the infinite family
{X,.(G)k, : K; € F} can carry a complex structure.

Case 1:Suppose that- is finite, but not cyclic. We claim that at most one of the sym-
plectic4-manifolds in the famil{ X,,(G)k, : K; € F,,} can be complex. This follows by
combining the fact that*(X,,(G)) = r*(X,(G)k,) = 1, items (a),(b) and (c) above.
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Case 2:Suppose thaty is infinite. Then by comparing the Seiberg-Witten invarsaoit
the members of the family X, (G)k, : K; € F,}, which are pairwise distinct, and using
(@), (b) and (d) above, we conclude that at most one of the Batp4-manifolds in the
family {X,,(G)k, : K; € F,} can be complex.

Case 3:Finally, assume that is finite cyclic. Note that complex elliptic surfaces with
finite cyclic fundamental group consist of the following fiyn E£(n),, (1 < p < q), for
which 7y = Zgcq.q)- We refer the reader to [22, Theorem 3.3.6] for the companiadf the
Seiberg-Witten invariants of'(n), , (for complete details, see the original paper [17]). In
order to complete the discussion, we need to impose a sigtriction on the familyF;,.

Lemma 5.7. For any integerh > 1, there exists an infinite familf;, C F, such that the
Alexander polynomial of any memberf is different than that of any torus knot.

Proof. Since the equatiofip — 1)(¢ — 2)/2 = h has only finitely many solutions, the
number of(p, ¢)-torus knots of genus is finite. Hence we can get the desired fanifiy
by removing at most finitely many membersgf. O

As a result, for any familyF;, as in Lemma5]7, we conclude that none of symplectic
4-manifolds in the family{ X,,(G), : K; € F;} can be complex, since we can guarantee
that the Seiberg-Witten invariants of eadh, (G)k, is different from the Seiberg-Witten
invariants of any&'(n),, ,. O

6. EXOTIC STEIN FILLINGS WITH ARBITRARY FUNDAMENTAL GROUP

In this final section we prove Corollary1.2.

Corollary 1.2. For any finitely presentable grou@, there exists a contact-manifold
which admits infinitely many homeomorphic but pairwise ddfeomorphic Stein fillings
such that the fundamental group of each filling is isomorpbi€G. Moreover, we observe
that the contac8-manifold above is contactomorphic to the link of some isala&omplex
surface singularity equipped with its canonical contactisture.

Proof. By Propositior 417, there is a closed sympledtimanifold X,,(G) whose funda-
mental group i€7, which admits a Lefschetz fibration ovéf that has at leastn pairwise
disjoint sphere sections of squar@. By removing tubular neighborhoods of some of
these sections and a neighborhood of a regular fiber we obfaikLF (positive allowable
Lefschetz fibration) oveP? which is a Stein filling of the contact structure induced @n it
boundary (cf. [[2, 30]). As shown in[6, Lemmata 4.1 & 4.2], tmundary3-manifold is

a Seifert fiberedingularity linkand the induced contact structure is tamonicalcontact
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structure on this singularity link. For more on the canohammtact structures and a dis-
cussion about their Stein/symplectic fillings we advisertaer to turn to [34, Section 9]
and [42, Section 6].

To produce an infinite family of exotic Stein fillings of thensa Seifert fibered singu-
larity link with its canonical contact structure, we use thmily of Lefschetz fibrations
obtained via knot surgery along the aforementioned téras in the proof of Theorem 1.1.
To be more precise, we take an infinite famfty = { K : i € N} of fibered knots of some
fixed genush > 2 with pairwise distinct Alexander polynomials and apply ksargery
to X,,(G) alongT, to produce an infinite family of mutually non-diffeomorphilosed
symplectic4-manifolds{ X,,(G)k, : i € N} all homeomorphic toX,,(G).

Moreover, by Lemma5l4X,, (G)k, admits a genu8g + 2h + n — 1 Lefschetz fibra-
tion overS? induced from the genuy + n — 1 Lefschetz fibration onX,,(G) described
in Proposition_4.l7. Furthermore, the disjoifit2)-sphere sections of the Lefschetz fi-
bration X,,(G) — S? remains as disjoint—2)-sphere sections of the Lefschetz fibration
X.(G)k, — S?, since the former sections are disjoint from the surgenys@

As a consequence, for eatke N, by removing a tubular neighborhood of only one of
these(—2)-sphere sections and a neighborhood of a regular fiber of¢ferhetz fibration
X.(G)k, — S?, we obtain an infinite family of Stein fillings of theameSeifert fibered
singularity link equipped with its canonical contact sture on the boundary . In fact, we
fix one (—2)-sphere section of the Lefschetz fibratidi (G) — S? from the beginning
and remove the “same” section in eakh(G)x, — S2. Using the facts that (i) any diffeo-
morphism of the boundary of the union of a tubular neighbodhaf a(—2)-sphere section
and a neighborhood of a regular fiber extends to this unioffct.emma 3.1]) and (i) the
members of the familf X,,(G) . | i € N} are mutually non-diffeomorphic (see the proof
of Propositior . 5.6), we conclude that the members of ouritefifamily of Stein fillings
are mutually non-diffeomorphic as well.

Now we show that the fundamental group of each filling is isgehe to G, which
is a consequence of the Seifert-Van Kampen’s Theorem. &ldiiat the normal circles
resulting from the removal of thé-2)-sphere section and the gerg+ 2h + n — 1
fiber of the Lefschetz fibratioX,,(G) x, — S? are both nullhomotopic. For the former we
use any of the remaining-2)-sphere sections and for the latter we use so#B-sphere
transversal to the removéd 2)-sphere section. For the full details on the existence di suc
disjoint (—2)-spheres, we refer the reader|to [6, Lemma 4.9].

Finally, we claim that the Stein fillings that we construcédubve are all homeomorphic,
which finishes the proof of Corollafy 1.2. First we note tHat,some fixedh > 2, the4-
manifold X, (G) ., is homeomorphic td(, (G) for any choice ofi; € 7, by Lemmd5.P.
Therefore, for any # j, we deduce thak(,(G),. is homeomorphic toX,,(G)k,. We
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would like to show that after we remove from both (G) ., and.X;,(G) ., a tubular neigh-

borhood of a —2)-sphere section and a neighborhood of a regular fiber in tegpective
Lefschetz fibrations ove$?, the remanning Stein fillings are homeomorphic.

Let us recall from Lemmia 5.2 thaf, (G) contains a copy of the nucled(n), and each
X,(G)g, contains a copy of an exotic nucleddn)x,. Moreover, we have the following
decompositionsX,,(G) = N(n) UW(G,n,g) and X,,(G)g, = N(n)x, UW(G,n,g).
Furthermore, for any choice df;, the4-manifold X,,(G) . is homeomorphic to\,,(G),
which can be assumed to restrict to the identity maplée, n, g).

Next, we would like to see that this homeomorphism descemds itomeomorphism
of the Stein fillings. First, we observe thatlf,(G) a tubular neighborhood of arfy-2)-
sphere section is disjoint from the cusp neighborhood ofdhesT in N (n) and the tubular
neighborhood of a regular fiber intersects this cusp neidtdmz and consequently(n)
along two disjoint copies 0D? x D2. Using the fact that the homeomorphism described
in the previous paragraph is identity @ (G, n, g), we can remove the configuration con-
sisting of the union of a section and a regular fiber entiretgept the two disjoint copies
of D? x D?, by not affecting the homeomorphism. Performing knot styrg@eration on
T in N(n) using any genus fibered knot, changes these two disk bundleBto< X (, 1),
whereX(h, 1) denotes genuk surface with one puncture. Since any homeomorphism of
d(D? x X(h, 1)) extends, the identity map on the boundary extends over theseopies
of D? x X(h,1). Thus, our homeomorphism on the complement of the removigghne
borhoods of the regular gen@s + 2h + n — 1 fiber and the —2)-sphere section is well
defined. O
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