
EXOTIC STEIN FILLINGS WITH ARBITRARY FUNDAMENTAL GROUP

ANAR AKHMEDOV AND BURAK OZBAGCI

ABSTRACT. Let G be a finitely presentable group. We provide an infinite familyof
homeomorphic but pairwise non-diffeomorphic, symplecticbut non-complex closed four-
manifolds with fundamental groupG such that each member of the family admits a Lef-
schetz fibration of the same genus over the two-sphere. As a corollary, we also show
the existence of a contact three-manifold which admits infinitely many homeomorphic but
pairwise non-diffeomorphic Stein fillings such that the fundamental group of each filling
is isomorphic toG. Moreover, we observe that the contact three-manifold above is con-
tactomorphic to the link of some isolated complex surface singularity equipped with its
canonical contact structure.

1. INTRODUCTION

In his ground-breaking work, Donaldson [15] proved that every closed symplectic 4-
manifold admits a Lefschetz pencil overS2 and Gompf [21] showed that every finitely
presentable groupG can be realized as the fundamental group of some closed symplectic
4-manifold. Since a Lefschetz pencil can be turned into a Lefschetz fibration by blowing up
its base locus—that has no effect on the fundamental group ofthe underlying4-manifold—
one immediately obtains the existence of a closed symplectic 4-manifold with fundamental
groupG, which admits a Lefschetz fibration overS2. An alternative method of proof of
this result was given in [10, 27], where a Lefschetz fibrationwas constructed overS2 via
an explicit description of its vanishing cycles on a surfaceof genus greater than one, so that
the fundamental group of the total space is isomorphic toG. Note that the total space of
any Lefschetz fibration overS2 admits a symplectic structure, provided that its fiber genus
is greater than one [22]. Our first goal here is to prove the following result.

Theorem 1.1.For any finitely presentable groupG, there exists an infinite family of home-
omorphic but pairwise non-diffeomorphic, symplectic but non-complex closed4-manifolds
with fundamental groupG such that each member of this family admits a Lefschetz fibration
of the same genus overS2.
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Note that the Lefschetz fibrations we construct are necessarily non-holomorphic, since
their total spaces are non-complex. In order to prove Theorem 1.1, we first design an initial
closed symplectic4-manifold with fundamental groupG using some standard techniques
of 4-manifold theory such as Luttinger surgery and symplectic sum in an intricate way so
that the well-known Lefschetz fibrations on the symplectic building blocks involved in the
construction fit together properly to yield a Lefschetz fibration (with some extra properties)
on this4-manifold. Then, by performing Fintushel-Stern knot surgery—using an infinite
family of pairwise inequivalent fibered knots of some fixed genus—along a homologically
essential torus of square zero in our initial manifold, we obtain an infinite family of closed
symplectic4-manifolds. The crux of the matter is that the torus above is strategically em-
bedded relative to the Lefschetz fibration structure on the initial 4-manifold so that this
structure is retained after the knot surgery. Moreover, we show that the4-manifolds in this
family are all homeomorphic, and we rely on their Seiberg-Witten invariants, which are
determined by the Alexander polynomials of the fibered knots, to distinguish their diffeo-
morphism types pairwise (cf. [18]).

Finally, we use the classification of complex surfaces, symplectic/complex Kodaira di-
mension, and the Seiberg-Witten invariants to show that these symplectic4-manifolds can
not carry any complex structures, which clearly implies that no Lefschetz fibrations on
them (including the ones we constructed above) can be holomorphic. Note that Parshin
and Arakelov’s proofs of the Geometric Shafarevich Conjecture show that there are only
finitely many holomorphic Lefschetz fibrations with fixed fiber genus and singular set over
S2 (cf. [11, 41]).

Next, we prove the existence of a contact3-manifold which admits an infinite family
of homeomorphic but pairwise non-diffeomorphic Stein fillings with fundamental group
G—which is essentially the content of Corollary 1.2 below—byremoving a regular fiber
and some number of sections from each Lefschetz fibration over S2 given in Theorem 1.1.
This simple-minded approach has some delicate issues that has to be dealt with such as to
show that the fundamental group remains the same after the removal of the aforementioned
pieces from each Lefschetz fibration and that the Seiberg-Witten invariants are still effective
to distinguish the diffeomorphism types of the remaining Stein fillings pairwise. The non-
holomorphicity of the Lefschetz fibrations given in Theorem1.1 does not play any role in
the proof of Corollary 1.2, although some other extra properties they possess turn out to be
essential.

Corollary 1.2. For any finitely presentable groupG, there exists a contact3-manifold
which admits infinitely many homeomorphic but pairwise non-diffeomorphic Stein fillings
such that the fundamental group of each filling is isomorphictoG. Moreover, we observe
that the contact3-manifold above is contactomorphic to the link of some isolated complex
surface singularity equipped with its canonical contact structure.
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We would like to point out that the wordexoticin the title of the present paper refers to
homeomorphic but non-diffeomorphic, which is commonly used among4-manifold topolo-
gists. The second statement in Corollary 1.2 follows immediately from [6, Lemmata 4.1 &
4.2], since the proof presented there for a certain type of Seifert fibered3-manifolds holds
true verbatim for the case at hand in the present paper. By including the second statement
in Corollary 1.2, we intend to emphasize the fact that although many examples of isolated
complex surface singularity links which admit only finitelymany Stein/symplectic fillings,
up to diffeomorphism or symplectic deformation equivalence, appeared in the literature
(see, for example, [14, 29, 33, 35, 36, 37, 39]), very few examples of singularity links with
infinitely many Stein fillings are known.

Note that Corollary 1.2 may be considered as a vast generalization of [5, Theorem 1.1]
and [6, Theorem 5.3], where the first statement was proved forG = 1 in the former and
both statements were proved forG ∈ {Z⊕Zm| m ∈ N } in the latter. The method of proof
in the present paper, however, is very similar to the ones cited above.

We would like to point out that none of the previous constructions of Lefschetz fibrations
in the literature could be effectively utilized instead of our Theorem 1.1 to prove Corol-
lary 1.2. For example, the Lefschetz fibrations overS2 described in [27] do not carry the
homologically essential tori we need for producing exotic copies using the knot surgery op-
eration. This is due to the fact that the examples in [27] are obtained by performing many
symplectic sums along higher genus surfaces, in contrast tothe examples in the present
article, where we performonly twosymplectic sums. Moreover, the existence ofhomolog-
ically trivial vanishing cyclesin those Lefschetz fibrations rules out the Steinness of the
remaining piece after the removal of some sections and a regular fiber.

The direct approach using Donaldson’s Lefschetz pencils would not work for us either,
since any of the sections of a Lefschetz fibration obtained byblowing up the base locus of a
Lefschetz pencil has self-intersection−1 and therefore is not suitable for our construction
of exotic Stein fillings of anisolated complex surface singularity.

Note that the total space of any of the Lefschetz fibrations that we construct in this paper
is symplectically minimal, which follows from Usher’s theorem in [46] (see also [13]), and
hasb+2 ≥ 2. The caseb+2 = 1 has been studied separately in [9]. The examples there,
however, do not necessarily yield Stein fillings.

Outline of the paper:In Section 2, we briefly review Luttinger surgery, knot surgery
and symplectic sum. In Section 3, we discuss a positive Dehn twist factorization of a
certain involution on a closed orientable surface, which leads to the description of a set
of Lefschetz fibrations that we use in our constructions. In Section 4, using Luttinger
surgery and symplectic sum we design the aforementioned initial closed symplectic4-
manifold withπ1 = G andb+2 ≥ 2 which admits a Lefschetz fibration overS2 that has
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some additional features. In Section 5, we prove Theorem 1.1, while in Section 6, we
prove Corollary 1.2.

2. LUTTINGER SURGERY, SYMPLECTIC SUM AND KNOT SURGERY

Luttinger surgery (cf. [31], [12]), symplectic sum (cf. [21]) and knot surgery (cf. [18])
are the fundamental tools for constructing exotic smooth structures on4-manifolds. In this
section, we briefly recall these operations.

2.1. Luttinger surgery. Let L be a Lagrangian torus embedded in a closed symplectic
4-manifold (X,ω). It follows thatL has a trivial normal bundle. In addition, by the La-
grangian neighborhood theorem of Weinstein, a tubular neighborhoodνL of L inX can be
identifiedsymplecticallywith a neighborhood of the zero-section in the cotangent bundle
T ∗L ≃ T × R

2 with its standard symplectic structure. This identification gives a framing
toL, which is called the Lagrangian framing. Letγ be any simple closed curve onL. The
Lagrangian framing determines uniquely, up to homotopy, a push-off ofγ in ∂(X − νL),
which we denote again byγ.

Definition 2.1. For any integerm, the(L, γ,m) Luttinger surgeryonX is defined as

X(L, γ,m) = (X − νL) ∪φ (S
1 × S1 ×D2),

where, for a meridianµL of L, the gluing mapφ : S1 × S1 × ∂D2 → ∂(X − νL) satisfies
φ([∂D2]) = [µL] +m[γ] in H1(∂(X − νL).

Note that form = 0, the Luttinger surgery is trivial, which means thatX(L, γ, 0) = X.

Remark 2.2. A salient feature of Luttinger surgery is that it can be done symplectically,
i.e., the symplectic formω onX−νL can be extended to a symplectic form onX(L, γ,m)
as shown in [12].

Lemma 2.3. The fundamental groupπ1(X(L, γ,m)) is obtained as the quotient of the
groupπ1(X − νL) by the normal subgroup generated by the productµLγ

m. Moreover,
we haveσ(X) = σ(X(L, γ,m)), andχ(X) = χ(X(L, γ,m)), whereσ andχ denote the
signature and the Euler characteristic, respectively.

Proof. The result about the fundamental group follows from the Seifert-van Kampen’s the-
orem. The fact that the signature is preserved under Luttinger surgery is a consequence of
the Novikov additivity. The result about the Euler characteristic is evident. �

2.2. Symplectic sum. Suppose thatX1 andX2 are closed symplectic four manifolds. For
eachi = 1, 2, letFi be a2-dimensional, smooth, closed, connected symplectic submanifold
of Xi. Assume thatF1 andF2 have the same genus and[F1]

2 + [F2]
2 = 0. Let νFi denote

the disk normal bundle ofFi in Xi.
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Definition 2.4. For any orientation-reversing diffeomorphismψ : ∂νF1 → ∂νF2 that is
lifted from an orientation-preserving diffeomorphism from F1 toF2, thesymplectic sumof
X1 andX2 is defined as the closed4-manifold

X1#ψX2 = (X1 − νF1) ∪ψ (X2 − νF2).

This gluing is called a symplectic sum since there is a natural isotopy class of symplectic
structures onX1#ψX2 extending the symplectic structures onX1 − νF1 andX2 − νF2 as
shown in [21].

2.3. Knot surgery. LetK be an arbitrary knot inS3 and letN(K) denote a tubular neigh-
borhood ofK ⊂ S3. Suppose thatT is an embedded torus with a tubular neighborhood
T × D2 in some smooth4-manifoldX. Let XK denote the4-manifold obtained by glu-
ingX \ (T ×D2) with (S1 × (S3 \N(K)) along their boundaries, where we identify the
boundary of a disk normal toT with a longitude ofN(K). The4-manifoldXK is said to
be obtained fromX by a Fintushel-Stern knot surgery [18].

3. POSITIVE FACTORIZATIONS OF SOME INVOLUTIONS ON SURFACES

In this section, we briefly introduce a set of Lefschetz fibrations overS2, which will
be one of the main ingredients in our proofs. It is a standard fact that an expression of
the identity in the mapping class groupMap(Σ) of some closed orientable surfaceΣ as a
product of positive (a.k.a. right-handed) Dehn twists along some simple closed curves on
Σ induces a Lefschetz fibration overS2. Here the regular fiber of the Lefschetz fibration is
the surfaceΣ at hand, while the simple closed curves are the vanishing cycles.

An obvious factorization of the identity inMap(Σ) can be obtained by taking the square
of a factorization of some involution onΣ. Consider, for example, the involutionθ on the
surfaceΣ2g+n−1 of genus2g + n− 1 depicted in Figure 1. The involutionθ can be viewed
as a combination of the hyperelliptic involution on the horizontal surface of genusn − 1
with a “vertical” involution on a surface of genus2g. Both the hyperelliptic and the vertical
involution of surfaces have well-known explicit positive factorizations in the respective
mapping class groups. Whenn = 1, a positive factorization of the vertical involutionθ is
given in [32] forg = 1 and in [27] forg ≥ 2.

Since the involutionθ in Figure 1 is obtained as a combination of two involutions in
the mapping class group with well-known positive factorizations, a factorization ofθ, in
principle, should be a combination of those factorizations. As a matter of fact, an explicit
factorization ofθ was worked out in [23, Theorem 2.0.1]. The method of proof in this
unpublished manuscript is a straightforward application of the Alexander’s trick. Namely,
one first fixes a finite set of curves whose complement is a disk on the surface and shows
that the image of each curve under the involution and (the potential) positive factorization
is isotopic.
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FIGURE 1. The involutionθ on the surfaceΣ2g+n−1

The positive factorization ofθ in [23] was also verified employing rather conceptual
methods in [47, Theorem 5], up to Hurwitz equivalence. In both papers, it was shown
that θ can be expressed as a product of4n + 2g − 2 positive Dehn twists. LetY (n, g)
denote the total space of the Lefschetz fibration defined byθ2 = 1 ∈ Map(Σ2g+n−1). It
follows that the4-manifoldY (n, g) has a genus2g + n − 1 Lefschetz fibration overS2

with s = 8n + 4g − 4 singular fibers, all of which are induced by nonseparating vanishing
cycles.

The Euler characteristic of the symplectic4-manifoldY (n, g) can be easily computed
using the following formula:

χ(Y (n, g)) = χ(S2)χ(Σ2g+n−1)+ s = 2(2−2(n+2g−1))+8n+4g−4 = 4n−4g+4.

The signatureσ(Y (n, g)) was calculated to be−4n in [47, Theorem 1].
The Lefschetz fibration defined byθ2 = 1 can also be described with a different point

of view as follows. Take a double branched cover ofS2 × Σg along the union of2n
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disjoint copies ofS2×{pt} and two disjoint copies of{pt}×Σg as illustrated in Figure 2.
The resulting branched cover has4n singular points corresponding to the number of the
intersection points of the2n horizontal spheres and the two vertical genusg surfaces in
the branch set. By desingularizing these4n singular points, one obtains the symplectic4-
manifoldS2×Σg#4nCP 2. Note that by projecting onto theS2 factor we obtain a (vertical)
fibration overS2 whose generic fiber is the double cover ofΣg, branched over2n points.
Thus, a generic fiber of the vertical fibration has genusn+2g−1. Furthermore, each of the
two singular fibers of the vertical fibration, arising from two disjoint copies ofΣg × {pt},
can be perturbed into4n+2g− 2 Lefschetz type singular fibers, which is equivalent to the
positive factorization of the involutionθ, as shown in the proof of [47, Theorem 27]. As
an immediate corollary one obtains that the4-manifoldY (n, g) is in fact diffeomorphic to
S2 × Σg#4nCP 2.

S2

S2

Σg Σg

S2

S2

S2

S2

S2

S2

2n copies

FIGURE 2. The branched cover description of the Lefschetz fibrations

4. LEFSCHETZ FIBRATIONS WITH ARBITRARY FUNDAMENTAL GROUP

In this section, for each finitely presentable group G, we construct a closed symplectic
4-manifold withπ1 = G andb+2 ≥ 2 which admits a Lefschetz fibration overS2 having
some additional properties (see Proposition 4.7). Parts ofthis section overlaps with certain
parts of [9], where the caseb+2 = 1 has been studied.
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4.1. Construction for a finitely generated free group. In the following, we first explain
our construction for the case of a finitely generated free group of arbitrary rankg ≥ 1,
before we deal with the general case.

The productΣg × T 2 admits a symplectic structure, whereΣg is a closed symplectic
genusg surface andT 2 is a symplectic torus. Suppose that{ai, bi : 1 ≤ i ≤ g} is the set
of standard generators ofπ1(Σg) and{c, d} is the set of standard generators ofπ1(T

2). Let
{pi, qi ≥ 0 : 1 ≤ i ≤ g} be a set of nonnegative integers and letp = (p1, . . . , pg) and
q = (q1, . . . , qg).

We denote byMg(p, q) the symplectic4-manifold obtained by performing a Luttinger
surgery on the symplectic4-manifoldΣg × T 2 along each of the2g Lagrangian tori with
the associated framings belonging to the set

L = {(a′i × c′, a′i,−pi), (b
′

i × c′′, b′i,−qi) | 1 ≤ i ≤ g}.

The reader can consult [8, Figure 1] for more on the prime and double prime notation,
where these loops are explicitly depicted. Here,a′i for example, is a free simple loop on the
surfaceΣg parallel to the generatorai of π1(Σg). Thereforea′i × c′ is a Lagrangian torus
in Σg × T 2, along which a Luttinger surgery is possible. Note that every Luttinger surgery
in a symplectic4-manifold is determined by a triple: a Lagrangian torus, a simple closed
curve on that torus and an integer (see Section 2.1).

This family of symplectic4-manifoldsMg(p, q) has been studied in [8] (see the discus-
sion on pages 579–580, and 592–593). For further details, werefer the reader to [8] and
references therein. The proof of the following result follows from the Example in [12, page
189].

Lemma 4.1. The4-manifoldMg(p, q) admits a locally trivial genusg fibration overT 2.

Proof. The (a′i × c′, a′i,−pi) or (b′i × c′′, b′i,−qi) Luttinger surgery in the trivial bundle
Σg × T 2 preserves the fibration structure overT 2 introducing a monodromy of the fiberΣg
along the curvec′ andc′′, respectively, in the base. Depending on the type of the surgery
the monodromy is either(tai)

pi or (tbi)
qi, wheret denotes a Dehn twist. �

The proof of the next result—which essentially follows fromLemma 2.3—can be found
in [8].

Lemma 4.2. The fundamental group ofMg(p, q) is generated byai, bi (i = 1, . . . , g) and
c, d, with the following relations:

(1) [b−1
i , d−1] = apii , [a−1

i , d] = bqii , for all 1 ≤ i ≤ g,
(2) [ai, c] = 1, [bi, c] = 1, for all 1 ≤ i ≤ g,
(3) [a1, b1][a2, b2] · · · [ag, bg] = 1, and
(4) [c, d] = 1.
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The torus{pt} × T 2 ⊂ Σg × T 2 induces a torusT, which is a section of the fibration in
Lemma 4.1, with trivial normal bundle inMg(p, q). On the other hand, a regular fiber of
the elliptic fibration on the complex surfaceE(n) is also a torus of square zero.

Definition 4.3. Let Xg,n(p, q) denote the symplectic sum ofMg(p, q) along the torusT
with the elliptic surfaceE(n) along a regular elliptic fiber.

Lemma 4.4. The symplectic4-manifoldXg,n(p, q) admits a genus2g + n − 1 Lefschetz
fibration overS2 with at least4n pairwise disjoint sphere sections of self intersection−2.
Moreover,Xg,n(p, q) contains a homologically essential embedded torus of square zero
disjoint from these sections which intersects each fiber of the Lefschetz fibration twice.

Proof. By definition,Xg,n(p, q) is obtained as the symplectic sum of the complex surface
E(n) along a regular elliptic fiber with the symplectic4-manifoldMg(p, q) along the sec-
tionT defined above.

Since the complex surfaceE(n) can be obtained (see [22, Section 7.3]) as a desingular-
ization of the branched double cover ofS2 × S2 with the branching set being4 copies of
{pt} × S2 and2n copies ofS2 × {pt}, it admits a genusn− 1 fibration overS2 as well as
an elliptic fibration overS2, both of which are obtained by the projection ofS2 × S2 onto
one of theS2 factors. In fact, both fibrations can be realized as Lefschetz fibrations and a
regular fiber of the elliptic fibration onE(n) intersects every genusn− 1 fiber of the other
Lefschetz fibration twice.

Consequently, when performing the symplectic sum ofE(n) along a regular elliptic fiber
with the surface bundleMg(p, q) along the sectionT, the fibration structures in both pieces
can be glued together to yield a genus2g + n − 1 Lefschetz fibration onXg,n(p, q) over
S2. The reason that this works is that if one composes the projection Mg(p, q) → T 2

with a hyperelliptic quotientT 2 → S2, one obtains a fibration ofMg(p, q) overS2, with
disconnected generic fiber and four singular fibers, such that the fibration near the torusT
is equivalent to the fibration onE(n) near a regular fiber.

Moreover, we observe that a sphere section of the genusn − 1 Lefschetz fibration
E(n) → S2 induce a section of the genus2g + n− 1 Lefschetz fibrationXg,n(p, q) → S2.
SinceE(n) can be realized as a fiber sum of two copies ofCP 2#(4n + 1)CP 2 along a
genusn − 1 surface (see [22, Remark 7.3.9(b)]), and since there is a Lefschetz fibration
CP 2#(4n+1)CP 2 → S2 with at least4n pairwise disjoint sphere sections of self intersec-
tion−1 (cf. [26, 43, 44]), we conclude that the genusn−1 Lefschetz fibrationE(n) → S2

has at least4n pairwise disjoint sphere sections of self intersection−2.
Furthermore, the homologically essential embedded torusT of square zero inXg,n(p, q)

which is disjoint from these sections intersects each fiber of the Lefschetz fibration twice.
�
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Lemma 4.5. The fundamental group of the symplectic4-manifoldXg,n(p, q) is generated
by the set{ai, bi : 1 ≤ i ≤ g} subject to the relations:

(1) apii = 1, bqii = 1, for all 1 ≤ i ≤ g, and
(2) Πg

j=1[aj , bj ] = 1.

Proof. Choose a base pointx on∂(νT) such thatπ1(Mg(p, q)\νT, x) is normally generated
by ai, bi (i = 1, · · · , g) andc, d. Notice that the symplectic torusT is disjoint from the
neighborhoods of2g Lagrangian tori inL above. Consequently, all but relation (3) in
Lemma 4.2 holds inπ1(Mg(p, q) \ νT). The product[a1, b1][a2, b2] · · · [ag, bg] is no longer
trivial, and it represents a meridian ofT in π1(Mg(p, q) \ νT). Now since the complement
of a neighborhood of a regular fiber in the elliptic fibration on E(n) is simply connected,
after the fiber sum which by definition identifies the regular fiber with the sectionT, we
havec = d = 1 in the fundamental group ofXg,n(p, q). Hence we obtain the desired
presentation forπ1(Xg,n(p, q)). �

Corollary 4.6. The fundamental group ofXg,n((1, 1, . . . , 1), (0, 0, . . . , 0)) is a free group
rankg.

Proof. The result follows immediately from Lemma 4.5, by settingpi = 1 andqi = 0, for
all 1 ≤ i ≤ g. �

To summarize, combining Lemma 4.4 with Corollary 4.6, we obtain a closed symplectic
4-manifold whose fundamental group is a free group of rankg, which has the desired
properties we listed at the beginning of this section.

4.2. Construction for an arbitrary finitely presentable group. In this section, we give
a construction for the general case. LetG be a finitely presentable group with a given
presentation〈x1, . . . , xk | r1, . . . , rs〉. Suppose thatΣk is a closed orientable surface of
genusk and let{aj, bj : 1 ≤ j ≤ k} denote the set of standard generators ofπ1(Σk). Since
ri is a word in the generatorsx1, . . . , xk, there is a smooth immersed oriented circleγi on
F representing the corresponding word inπ1(Σk), obtained by replacing eachxj with bj .
We may choose the loopγi (up to homotopy) such that at each self-intersection point,only
two segments ofγi intersect transversely. In order to carry out some Luttinger surgeries we
have in mind, we first need to resolve the self-intersection points ofγi by a trick that was
initially introduced in [10], and refined further in [27]. Inthe following, we will use the
version discussed in [27].

For each self-intersection point of the immersed curveγi where two segments intersect
locally, we glue a1-handle toF and modifyγi so that one of the intersecting segments goes
through the handle while the other remains under it. The modified curve on the new surface
will be denoted byγi as well. Notice that we only need a finite number of such handles
to resolve all the self-intersections ofγi. After these handle additions, the surfaceΣk is
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changed to a surfaceΣg of genusg ≥ k so that each (modified)γi is now an embedded
curve onΣg.

Let {ai, bi : 1 ≤ j ≤ g} represent the set of standard generators ofπ1(Σg), extending the
standard generators ofπ1(Σk). We perform Luttinger surgeries on the standard symplectic
4-manifoldΣg × T 2, along the following Lagrangian tori

{(a′i × c′, a′i,−1), (b′i × c′′, b′i,−1), k + 1 ≤ i ≤ g}.

Moreover, just as in the free group case, we perform Luttinger surgeries onΣg × T 2

along the2k Lagrangian tori belonging to the set

{(a′i × c′, a′i,−1), (b′i × c′′, b′i, 0) | 1 ≤ i ≤ k}.

LetM(G) denote the symplectic4-manifold obtained by the total of2g Luttinger surg-
eries onΣg × T 2. Notice thatk of these Luttinger surgeries have a surgery coefficient0.
As in Section 4.1, we take a symplectic sum ofM(G) along the torusT descending from
{pt}×T 2 withE(n) along a regular elliptic fiber (here we assumen ≥ 2 for reasons which
will be clear in Section 6), and denote the resulting symplectic 4-manifold byYn(G). Note
thatπ1(Yn(G)) is a free group of rankk, by Lemma 4.5.

Since a regular fiber of a genusn−1 hyperelliptic Lefschetz fibration onE(n) intersects
a regular fiber of an elliptic fibration onE(n) at two points,Yn(G) admits a genus2g+n−1
Lefschetz fibration overS2, just as we explained in the proof of Lemma 4.4.

Note thatYn(G) can also be constructed as the twisted fiber sum of two copies of the
genus2g+ n− 1 Lefschetz fibration onY (n, g) ∼= S2 ×Σg#4nCP 2 overS2, that we dis-
cussed in Section 3. This essentially follows from the fact that the symplectic sum ofE(n)
along a regular elliptic fiber withΣg×T 2 along the square zero torusT is diffeomorphic to
the untwisted fiber sum of two copies of the genus2g+n−1 fibration onS2×Σg#4nCP 2,
which in turn follows from the branched cover description ofthese4-manifolds (cf. [19,
page 1466]). When performing the Luttinger surgeries, the gluing diffeomorphism of the
genus2g + n − 1 fibration, which is an identity map initially, turns into theproduct of a
certain Dehn twists. This gluing diffeomorphismφ can be described explicitly using the
curves along which we perform our Luttinger surgeries:φ = ta1 · · · taktak+1

tbk+1
· · · tag tbg .

Here we view the Dehn twiststai ’s andtbi ’s as self-diffeomorphisms of the genus2g+n−1
surface by extending them from the genusg surface by the identity. Note that an analogues
construction is given in [48].

The global monodromy of the genus2g + n − 1 Lefschetz fibration onYn(G) is given
by the following word:θ2φ−1θ2φ = 1, where a positive factorizationθ ∈ Map(Σ2g+n−1)
is described in Section 3. Here, we would like to point out that the global monodromy
consists of Dehn twists in the factorization ofθ2 and their images by the diffeomorphism
φ, whose particular factorization above has nothing to do with the vanishing cycles.
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In addition to applying the above Luttinger surgeries on the“standard” tori, we applys
more surgeries along tori:

{(γ′i × c′′′, γ′i,−1), 1 ≤ i ≤ s}.

Recall thatγi is the simple closed curve obtained by resolving the self-intersection points
of the immersed curveγi which comes from the presentation of the groupG given at the first
paragraph of Section 4.2, wheres is the number of relations. Note that these Lagrangian tori
descend fromM(G) and survive inYn(G) after the fiber sum withE(n). LetXn(G) denote
the symplectic4-manifold obtained by performing these Luttinger surgeries inYn(G).

In the fundamental group ofXn(G) we have the following relations—which we explain
below—that come from the last set of Luttinger surgeries,

[e−1
k1
, d] = γ1, . . . , [e

−1
ks
, d] = γs

whereeki × d is a dual torus ofγ′i × c′′′. Here eacheki (see Figure 1) is a carefully chosen
disjoint vanishing cycle of the genus2g + n − 1 fibration (see Section 3) coming from
the hyperelliptic part of the involutionθ, and eachγ′i is modified so that it intersects the
vanishing cycleseki in a single point. Since after fiber summing withE(n), we havec =
d = 1, it follows thatπ1(Xn(G)) admits a presentation with generators{ai, bi : 1 ≤ i ≤ g}
and relations:

a1 = 1, . . . , ag = 1,

bk+1 = 1, . . . , bg = 1,

γ1 = 1, . . . , γs = 1.

In other words,π1(Xn(G)) = 〈b1, . . . , bk | γ1, . . . , γs〉, which is indeed isomorphic to
the given groupG. The above presentation follows from the following facts: (i) c = d = 1
in π1(X(G)), (ii) for each torusTi = γ′i× c′′′ there is at least one vanishing cycleeki of the
genus2g + n − 1 Lefschetz fibration onYn(G) (see Section 3) such thatγ′i intersectseki
precisely at one point, andγ′i does not intersect withekj for anyj 6= i.

After thes Luttinger surgeries on toriγ′i × c′′′, we obtain the following set of relations:

[e−1
k1
, d] = γ1, . . . , [e

−1
ks
, d] = γs.

Sinceeki = 1, andd = 1 in the fundamental groups ofYn(G) andXn(G), becauseeki
are the vanishing cycles of the genus2g + n − 1 fibrations on them, we obtainγi = 1 for
anyi. We can easily write down the global monodromy of the genus2g + n− 1 Lefschetz
fibration onXn(G): θ2φ′−1θ2φ′ = 1, whereφ′ = ta1 · · · taktak+1

tbk+1
· · · tag tbg tγ′1 · · · tγ′s . In

conclusion, we proved the main goal of this section which we state below.

Proposition 4.7. LetG be any finitely presentable group. Then for any integern > 1, there
exists a closed symplectic4-manifoldXn(G) satisfying the following properties:
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(1) The fundamental group ofXn(G) is isomorphic toG.
(2) There exists a Lefschetz fibrationXn(G) → S2 that admits at least4n pairwise

disjoint sphere sections of self intersection−2.
(3) There is a homologically essential embedded torusT ⊂ Xn(G) of square zero such

thatT is disjoint from the sections of the Lefschetz fibration in(2), and it intersects
each fiber twice.

(4) b+2 (Xn(G)) > 1.

Note that (4) in Proposition 4.7 simply follows from our assumptionn > 1, using the
fact thatb+2 (E(n)) = 2n − 1. The genus of the Lefschetz fibrationXn(G) → S2 is
2g+n− 1, whereg depends on the presentation ofG as explained at the second paragraph
of Section 4.2.

Remark 4.8. Our construction forn = 1 yields a genus2g Lefschetz fibrations overS2

with b+2 = 1 andc21 = 0. For the reader’s convenience, we discuss a few cases below

(1) By settingpi = ±1 andqi = ±1 in Subsection 4.1, we see that the fundamental
group ofXg,1(p, q) is a trivial group. Simple computation shows thatχ(Xg,1(p, q)) =
χ(E(1)) = 12, σ((Xg,1(p, q)) = σ(E(1)) = −8, and consequently we have
b+2 (Xg,1(p, q)) = b+2 (E(1)) = 1. In fact, the4-manifoldXg,1(p, q) in this special
case is an exotic copy ofE(1) = CP 2#9CP 2.

(2) By settingg = 1 and letting|p| ≥ 1 and |q| ≥ 1 vary, we see that the funda-
mental group ofX1,1(p, q) is generated by two elements{a, b} subject to the re-
lations: ap = 1, bq = 1, and [a, b] = 1, thusπ1(X1,1(p, q)) ∼= Zp × Zq. Since
b1(X1,1(p, q)) = 0, we similarly haveb+2 (X1,1(p, q)) = b+2 (E(1)) = 1.

(3) By settingg = 1, p = 0, andq = ±m for any integerm ≥ 1, we obtain the
Lefschetz fibration with the fundamental groupZ × Zm. Note that these examples
haveχ = 12, σ = −8, c21 = 0, andb+2 = b+2 (E(1)) + 1 = 2.

5. NON-HOLOMORPHIC LEFSCHETZ FIBRATIONS WITH ARBITRARY FUNDAMENTAL

GROUP

In this section we give a proof of Theorem 1.1.

Theorem 1.1.For any finitely presentable groupG, there exists an infinite family of home-
omorphic but pairwise non-diffeomorphic, symplectic but non-complex closed4-manifolds
with fundamental groupG such that each member of this family admits a Lefschetz fibra-
tion of the same genus overS2.

Proof. The statement in Theorem 1.1 follows by combining Proposition 5.6 and Lemma 5.4.
�
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In the following, we useXn(G) to denote the4-manifold given in Proposition 4.7, and
for any knotK ⊂ S3, we useXn(G)K to denote the4-manifold obtained fromXn(G) by
performing knot surgery along the torusT specified in Proposition 4.7, using the knotK.
We begin with some preliminary results.

Lemma 5.1. For any knotK, we haveπ1(Xn(G)K) = G.

Proof. We know thatπ1(Xn(G)) = G by Proposition 4.7. Then the result follows from
the Seifert-Van Kampen’s theorem, since all the loops on thetorusT given above are null-
homotopic inXn(G), and the homology class of a longitude of the knotK in S3 \ ν(K) is
trivial. �

Lemma 5.2. For any knotK, the4-manifoldXn(G)K is homeomorphic toXn(G).

Proof. Recall that there are three disjoint copies of the Gompf nuclei N(n) (cf. [20]) in
E(n) (for n ≥ 2) and only one of them is used during the construction ofXn(G), and
the remaining two descend toXn(G). Using any one of the nuclei that was not used
to obtainXn(G), we get the following decompositionXn(G) = N(n) ∪ W (G, n, g),
whereW (G, n, g) is diffeomorphic to the Milnor fiber of the singularity whoselink is
the Brieskorn homology3-sphereΣ(2, 3, 6n−1). Consequently, we see thatXn(G)K con-
tains a copy of an exotic nucleusN(n)K and we haveXn(G)K = N(n)K ∪W (G, n, g).
Since the boundary ofN(n)K is the Brieskorn homology3-sphere, the argument which
was elaborated in details in the last paragraph of the proof of [6, Proposition 5.4] shows
that for any choice ofK, the4-manifoldXn(G)K is homeomorphic toXn(G) such that this
homeomorphism is the identity onW (G, n, g). Note that there is still a cusp neighborhood
in the third nucleus. Similar arguments were used in [40] and[7].

�

Lemma 5.3. For any fibered knotK, the smooth4-manifoldXn(G)K is symplectic.

Proof. This is indeed a well-known result [18, page 368]. It simply follows by the fact
that the knot surgery4-manifoldXn(G)K can be obtained as a symplectic fiber sum of the
symplectic manifoldsXn(G) andMK × S1 along the symplectic torusT, whereMK is
obtained by0-framed surgery onK ⊂ S3. �

Lemma 5.4. For any fibered knotK, there exists a Lefschetz fibrationXn(G)K → S2

induced from the Lefschetz fibrationXn(G) → S2 described in Proposition 4.7.

Proof. This follows from the fact that the torusT along which we perform knot surgery
intersects each fiber of the Lefschetz fibrationXn(G) → S2 twice. The genus2g + n− 1
fiber of the Lefschetz fibrationXn(G) → S2 extends to become a genus2g + 2h + n− 1
fiber of the induced Lefschetz fibrationXn(G)K → S2 by gluing in two copies of the genus
h fiber surface of the knotK along the two punctures obtained by the removal of a tubular
neighborhood ofT. For the details of this classical trick we refer to [19]. �
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Lemma 5.5. The symplectic Kodaira dimensionκs(Xn(G)) is equal to1.

Proof. First of all, since the Luttinger surgery preserves the symplectic Kodaira dimension
κs [24], we conclude thatκs(Xn(G)) = κs(Yn(G)). Note thatYn(G) is obtained as a fiber
sum ofM(G) withE(n) andM(G) is obtained fromΣg×T 2 by Luttinger surgeries. Thus,
κs(Xn(G)) = κs(E(n, g)), where the Kahler surfaceE(n, g) is by definition the fiber sum
E(n)#idΣg × T 2. But according to [16, page 350], we haveκs(E(n, g)) = 1. Here we
assume thatn ≥ 2 andg ≥ 1. �

Proposition 5.6. There exists an infinite familyF = {Ki : i ∈ N} of fibered knots of
some fixed genus such that{Xn(G)Ki

: Ki ∈ F} consists of homeomorphic, pairwise
non-diffeomorphic, symplectic but non-complex smooth closed4-manifolds.

Proof. The following facts are some of the main ingredients of our proof.

(a) The complex Kodaira dimensionκh is equal to the symplectic Kodaira dimensionκs

for a smooth4-manifold which admits a symplectic structure as well as a complex structure,
where these structures are not necessarily required to be compatible [16, Theorem 1.1].

(b) A complex surface withκh = 1 is properly elliptic.
(c) The diffeomorphism type of an elliptic complex surface with non-cyclic fundamental

group is determined by its topological type [45] (see also [22, Remark 8.3.13]).
(d) The diffeomorphism type of a complex elliptic surfaceS withχ(S) > 0 and|π1(S)| =

∞ is determined by its fundamental group (cf. [22, Theorem 8.3.12], and [45]).

Fix any integerh ≥ 2. Suppose thatFh = {Ki : i ∈ N} is any infinite family of genus
h fibered knots inS3 with pairwise distinct Alexander polynomials. Such families of knots
exist by the work of T. Kanenobu [25].

Recall thatπ1(Xn(G)) ∼= G by Proposition 4.7. The infinite family{Xn(G)Ki
: Ki ∈

Fh} consists of closed symplectic4-manifolds withπ1 ∼= G, which are all homeomorphic
toXn(G). These assertions indeed follow from Lemmata 5.1–5.3. Moreover, we observe
that the members of this family are pairwise non-diffeomorphic. This is because of the fact
that the Seiberg-Witten invariant ofXn(G)Ki

is determined by the Alexander polynomial
of Ki (cf. [18]). AlthoughXn(G) is not simply-connected, this formula still works for
knot surgery onXn(G), sinceb+2 (Xn(G)) > 1 andXn(G) has non-trivial SW-invariants
which is guaranteed by its symplectic structure. To finish the proof of Proposition 5.6,
we show that at most finitely many of the symplectic4-manifolds in the infinite family
{Xn(G)Ki

: Ki ∈ Fh} can carry a complex structure.
Case 1:Suppose thatG is finite, but not cyclic. We claim that at most one of the sym-

plectic4-manifolds in the family{Xn(G)Ki
: Ki ∈ Fh} can be complex. This follows by

combining the fact thatκs(Xn(G)) = κs(Xn(G)Ki
) = 1, items (a),(b) and (c) above.
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Case 2:Suppose thatG is infinite. Then by comparing the Seiberg-Witten invariants of
the members of the family{Xn(G)Ki

: Ki ∈ Fh}, which are pairwise distinct, and using
(a), (b) and (d) above, we conclude that at most one of the symplectic 4-manifolds in the
family {Xn(G)Ki

: Ki ∈ Fh} can be complex.
Case 3:Finally, assume thatG is finite cyclic. Note that complex elliptic surfaces with

finite cyclic fundamental group consist of the following family: E(n)p,q (1 ≤ p ≤ q), for
whichπ1 ∼= Zgcd(p,q). We refer the reader to [22, Theorem 3.3.6] for the computation of the
Seiberg-Witten invariants ofE(n)p,q (for complete details, see the original paper [17]). In
order to complete the discussion, we need to impose a slight restriction on the familyFh.

Lemma 5.7. For any integerh > 1, there exists an infinite familyF ′

h ⊂ Fh such that the
Alexander polynomial of any member ofF ′

h is different than that of any torus knot.

Proof. Since the equation(p − 1)(q − 2)/2 = h has only finitely many solutions, the
number of(p, q)-torus knots of genush is finite. Hence we can get the desired familyF ′

h

by removing at most finitely many members ofFh. �

As a result, for any familyF ′

h as in Lemma 5.7, we conclude that none of symplectic
4-manifolds in the family{Xn(G)Ki

: Ki ∈ F ′

h} can be complex, since we can guarantee
that the Seiberg-Witten invariants of eachXn(G)Ki

is different from the Seiberg-Witten
invariants of anyE(n)p,q. �

6. EXOTIC STEIN FILLINGS WITH ARBITRARY FUNDAMENTAL GROUP

In this final section we prove Corollary 1.2.

Corollary 1.2. For any finitely presentable groupG, there exists a contact3-manifold
which admits infinitely many homeomorphic but pairwise non-diffeomorphic Stein fillings
such that the fundamental group of each filling is isomorphictoG. Moreover, we observe
that the contact3-manifold above is contactomorphic to the link of some isolated complex
surface singularity equipped with its canonical contact structure.

Proof. By Proposition 4.7, there is a closed symplectic4-manifoldXn(G) whose funda-
mental group isG, which admits a Lefschetz fibration overS2 that has at least4n pairwise
disjoint sphere sections of square−2. By removing tubular neighborhoods of some of
these sections and a neighborhood of a regular fiber we obtaina PALF (positive allowable
Lefschetz fibration) overD2 which is a Stein filling of the contact structure induced on its
boundary (cf. [2, 30]). As shown in [6, Lemmata 4.1 & 4.2], theboundary3-manifold is
a Seifert fiberedsingularity linkand the induced contact structure is thecanonicalcontact
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structure on this singularity link. For more on the canonical contact structures and a dis-
cussion about their Stein/symplectic fillings we advise thereader to turn to [34, Section 9]
and [42, Section 6].

To produce an infinite family of exotic Stein fillings of the same Seifert fibered singu-
larity link with its canonical contact structure, we use thefamily of Lefschetz fibrations
obtained via knot surgery along the aforementioned torusT as in the proof of Theorem 1.1.
To be more precise, we take an infinite familyFh = {Ki : i ∈ N} of fibered knots of some
fixed genush ≥ 2 with pairwise distinct Alexander polynomials and apply knot surgery
to Xn(G) alongT, to produce an infinite family of mutually non-diffeomorphic closed
symplectic4-manifolds{Xn(G)Ki

: i ∈ N} all homeomorphic toXn(G).
Moreover, by Lemma 5.4,Xn(G)Ki

admits a genus2g + 2h + n − 1 Lefschetz fibra-
tion overS2 induced from the genus2g + n − 1 Lefschetz fibration onXn(G) described
in Proposition 4.7. Furthermore, the disjoint(−2)-sphere sections of the Lefschetz fi-
brationXn(G) → S2 remains as disjoint(−2)-sphere sections of the Lefschetz fibration
Xn(G)Ki

→ S2, since the former sections are disjoint from the surgery torusT.
As a consequence, for eachi ∈ N, by removing a tubular neighborhood of only one of

these(−2)-sphere sections and a neighborhood of a regular fiber of the Lefschetz fibration
Xn(G)Ki

→ S2, we obtain an infinite family of Stein fillings of thesameSeifert fibered
singularity link equipped with its canonical contact structure on the boundary . In fact, we
fix one (−2)-sphere section of the Lefschetz fibrationXn(G) → S2 from the beginning
and remove the “same” section in eachXn(G)Ki

→ S2. Using the facts that (i) any diffeo-
morphism of the boundary of the union of a tubular neighborhood of a(−2)-sphere section
and a neighborhood of a regular fiber extends to this union (cf. [5, Lemma 3.1]) and (ii) the
members of the family{Xn(G)Ki

| i ∈ N} are mutually non-diffeomorphic (see the proof
of Proposition 5.6), we conclude that the members of our infinite family of Stein fillings
are mutually non-diffeomorphic as well.

Now we show that the fundamental group of each filling is isomorphic toG, which
is a consequence of the Seifert-Van Kampen’s Theorem. Notice that the normal circles
resulting from the removal of the(−2)-sphere section and the genus2g + 2h + n − 1
fiber of the Lefschetz fibrationXn(G)Ki

→ S2 are both nullhomotopic. For the former we
use any of the remaining(−2)-sphere sections and for the latter we use some(−2)-sphere
transversal to the removed(−2)-sphere section. For the full details on the existence of such
disjoint (−2)-spheres, we refer the reader to [6, Lemma 4.9].

Finally, we claim that the Stein fillings that we constructedabove are all homeomorphic,
which finishes the proof of Corollary 1.2. First we note that,for some fixedh ≥ 2, the4-
manifoldXn(G)Ki

is homeomorphic toXn(G) for any choice ofKi ∈ Fh, by Lemma 5.2.
Therefore, for anyi 6= j, we deduce thatXn(G)Ki

is homeomorphic toXn(G)Kj
. We
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would like to show that after we remove from bothXn(G)Ki
andXn(G)Kj

, a tubular neigh-
borhood of a(−2)-sphere section and a neighborhood of a regular fiber in theirrespective
Lefschetz fibrations overS2, the remanning Stein fillings are homeomorphic.

Let us recall from Lemma 5.2 thatXn(G) contains a copy of the nucleusN(n), and each
Xn(G)Ki

contains a copy of an exotic nucleusN(n)Ki
. Moreover, we have the following

decompositions:Xn(G) = N(n) ∪ W (G, n, g) andXn(G)Ki
= N(n)Ki

∪ W (G, n, g).
Furthermore, for any choice ofKi, the4-manifoldXn(G)Ki

is homeomorphic toXn(G),
which can be assumed to restrict to the identity map onW (G, n, g).

Next, we would like to see that this homeomorphism descends to a homeomorphism
of the Stein fillings. First, we observe that inXn(G) a tubular neighborhood of any(−2)-
sphere section is disjoint from the cusp neighborhood of thetorusT inN(n) and the tubular
neighborhood of a regular fiber intersects this cusp neighborhood and consequentlyN(n)
along two disjoint copies ofD2 × D2. Using the fact that the homeomorphism described
in the previous paragraph is identity onW (G, n, g), we can remove the configuration con-
sisting of the union of a section and a regular fiber entirely,except the two disjoint copies
of D2 × D2, by not affecting the homeomorphism. Performing knot surgery operation on
T inN(n) using any genush fibered knot, changes these two disk bundles toD2×Σ(h, 1),
whereΣ(h, 1) denotes genush surface with one puncture. Since any homeomorphism of
∂(D2 × Σ(h, 1)) extends, the identity map on the boundary extends over thesetwo copies
of D2 × Σ(h, 1). Thus, our homeomorphism on the complement of the removed neigh-
borhoods of the regular genus2g + 2h + n − 1 fiber and the(−2)-sphere section is well
defined. �
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EMATICS, KOÇ UNIVERSITY, ISTANBUL, TURKEY

E-mail address: bozbagci@ku.edu.tr


	1. Introduction
	2. Luttinger surgery, symplectic sum and knot surgery
	2.1. Luttinger surgery
	2.2. Symplectic sum
	2.3. Knot surgery

	3. Positive factorizations of some involutions on surfaces
	4. Lefschetz fibrations with arbitrary fundamental group
	4.1. Construction for a finitely generated free group
	4.2. Construction for an arbitrary finitely presentable group

	5. Non-holomorphic Lefschetz fibrations with arbitrary fundamental group
	6. Exotic Stein fillings with arbitrary fundamental group
	References

