SINGULARITY LINKS WITH EXOTIC STEIN FILLINGS
ANAR AKHMEDOV AND BURAK OZBAGCI

ABSTRACT. In [4], it was shown that there exist infinitely many cont&etifert fibered
3-manifolds each of which admits infinitely many exotic (hamerphic but pairwise non-
diffeomorphic) simply-connected Stein fillings. Here weesnd this result to a larger set
of contact Seifert fibere@-manifolds with many singular fibers and observe that ti3ese
manifolds are singularity links. In addition, we prove tlia¢ contact structures induced
by the Stein fillings are the canonical contact structureshese singularity links. As a
consequence, we verify a prediction of Andras Némethj [B6providing examples of
isolated complex surface singularities whose links withirtitanonical contact structures
admitting infinitely many exotic simply-connected Steitirijs. Moreover, for infinitely
many of these contact singularity links and for each pasititegern, we also construct
an infinite family of exotic Stein fillings with fixed fundamehgroupZ & Z,,.

1. INTRODUCTION

The link of a normal complex surface singularity carries dnidi fillable (also known
as canonical) contact structugg,, which is uniquely determined up to isomorphism [9].
A Milnor fillable contact structure is Stein fillable since egular neighborhood of the
exceptional divisor in a resolution of the surface singtyarovides a holomorphic filling
which can be deformed to be a blow-up of a Stein surface witbbanging the contact
structuret.,,, on the boundary |6]. Moreover, if a singularity admits a sthawy then the
corresponding Milnor fiber is also a Stein filling &f,...

In this paper, we generalize the main result'in [4] to a lafgerily of contact Seifert
fibered3-manifolds admitting many singular fibers. We also observa@ditional feature
of these contact-manifolds: They appear as the links of some isolated coxmgleface
singularities, and the contact structures are the canlooines on these singularity links.
The following theorems verify a prediction of Nemethi [ZBling a gap in the literature.

Theorem 4.4.There exist infinitely many Seifert fibered singularity §glach of which ad-
mits infinitely many exotic simply-connected Stein filliogss canonical contact structure.

Theorem 5.3. There exists an infinite family of Seifert fibered singulaliinks such that
for each positive integet, each member of this family equipped with its canonical acint
structure admits infinitely many exotic Stein fillings whawsedlamental group i% & Z,,.
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2 AKHMEDOV AND OZBAGCI

One should contrast our result with what is known for linksome other isolated com-
plex surface singularities. For example, Ohta and Ono stdhat the diffeomorphism
type of any minimal strong symplectic filling of the link of argle singularity is unique
which implies that the minimal resolution of the singularg diffeomorphic to the Mil-
nor fiber [30]. They also showed that any minimal strong syeuit filling of the link of a
simple elliptic singularity is diffeomorphic either to th@&nimal resolution or to the Milnor
fiber of the smoothing of the singularity [29] .

Moreover, Lisca showed that the canonical contact streanora lens space (the oriented
link of some cyclic quotient singularity) has orfipitely many distinct Stein fillings, up to
diffeomorphism([22] (see also earlier work of McDuif [25JRecently, it was shown that
these Stein fillings correspond bijectively to the Milnorréb coming from all possible
distinct smoothings of the singularity [27].

In summary, in all the previously studied examples in therditure, it was shown that
an isolated complex surface singularity with its canongaitact structure admits finitely
many diffeomorphism types of Stein fillings such that eaatirtilling is diffeomorphic
either to the minimal resolution or to the Milnor fiber of onetbhe smoothings of the
singularity.

We should mention that in [31, Theorem 1.2] Ohta and Ono sHadWe existence of
singularity links which admit infinitely many distinct mmial symplectic fillings distin-
guished by theib; . These fillings, however, aret necessarily Stein or simply-connected

Onthe other hand, using log transforms, Akbulut and Yasuif&orem 1.1] constructed
contact3-manifolds admitting infinitely many exotic simply-conrted Stein fillings with
b, = 2, inspired by an earlier paper by Akbulut [1]. In these aesclhowever, the contact
3-manifolds in question aneot singularity links

Finally, we would like to point out that in_[5])sing very different methogae were able
to prove the statement of Theorem 5.3 by repladngZ,, by any finitely presented group
G.

2. MILNOR FILLABLE CONTACT STRUCTURES ONSEIFERT FIBERED3-MANIFOLDS

In this section we identify the isomorphism class of the ecaral contact structure on
a singularity link which admits a Seifert fibration. A topgioal characterization of such
3-manifolds was given by Neumarin |28]: A closed and orienteife®& fibered3-manifold
is a singularity link if and only if it has a Seifert fibratiowver an orientable base such that
the Euler number of this fibration is negative.

Proposition 2.1. The isomorphism class of the Milnor fillable contact struetg.,,, on a
closed and oriente@-manifoldY” which has a Seifert fibration with negative Euler number
over an orientable base coincides with the unique isomarplilass of the!-invariant
transverse contact structures.

Proof. It is known that any Milnor fillable contact structuge,, on a singularity link is
universally tight[21]. According td [24, Corollary 4], treeexist a locally free5!-action on
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Y such that.,,, is either transverse to the orbits or invariant underthaction. Moreover,
a contact structure which is both invariant and transversbe orbits of a locally free!-
action exists on a Seifert fiberedmanifold Y exactly when the Euler number of is
negative (cf. [[20, 23]). Furthermore, there is only one isgohism class of such contact
structures as indicated in the last paragraph on page 13g&fjrand hence the result
follows since a Milnor fillable contact structure is unigyeto isomorphism[9]. O

3. EXTENDING DIFFEOMORPHISMS

Letp = (p1,po, ..., pr) denote anr-tuple ofpositiveintegers and leE;, denote a closed
oriented surface of genus > 0. Let Z, ; denote the oriented smoothmanifold-with-
boundary obtained by plumbing oriented disk bundles agogrtb the star-shaped graph
with » + 1 vertices described as follows: The central vertex reptssenx D? and if we
label the remaining vertices by; = 1, ..., r, theith vertex—connected by an edge to the
central vertex—representsiz-bundle overS? whose Euler number is p;.

Proposition 3.1. Any orientation preserving self-diffeomorphismaf; ; extends over
Zh pe

Proof. We sketch the proof of this proposition which is a simple esten of the proof
of [4, Lemma 3.1], where the case= 1 was treated in full details. The strategy of the
proof there, was to find the required extension in two stepgre/the first step was to find

an extension to the paﬁh x D? of the plumbing and then complete the extension on the

remaining patrt. Heréh denotes’, with a disk removed.

In order to prove our result, we apply the same strategy, @herremove several disks
from ¥, and the second paragraph in the proof.of [4, Lemma 3.1] woekisatim as the
initial step. To complete the extension to thdisk-bundles ovef?, we rely on a result of
Bonahonl[7], since the boundary of the orienfettbundle ovelS? with Euler number-p;
is the orientecb-bundle overS? with the same Euler number, which in turn, is orientation
preserving diffeomorphic to the lens spaog;, 1). O

4. SNGULARITY LINKS WITH SIMPLY -CONNECTED EXOTICSTEIN FILLINGS

The boundaryZ, ; has an orientation induced from the orientation on the smaéot
manifold-with-boundaryZ,, , described in Sectidn 3. Léf, ; denotedZ,, ; with the oppo-
site orientation. In other wordsy;, ; is the closed, orientegtmanifold which is obtained
by plumbing of oriented circle bundles according to the-staaped graph with + 1 ver-
tices as illustrated on the left in Figure 1: The centraleerepresents;, x S and if we
label the remaining vertices by: = 1, ..., r, theith vertex—connected by an edge to the
central vertex—represents ah-bundle overS? whose Euler number is;.

Lemma 4.1. The3-manifoldY’, ; is the link of an isolated complex surface singularity.
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Proof. The3-manifoldY’, ; is obtained by plumbing of circle bundles according to tlae-st
shaped graph illustrated on the left in Figlte 1 with 1 vertices, where the weight on a
vertex represents the Euler number of the correspondiegiad circle bundle as usual.

i, .

FIGURE 1. All except the central vertex represent circle bundlesr 6.

By blowing up and down this plumbing graph several times vegtisaty}, ; is orientation-
preserving diffeomorphic to th&-manifold given by the star-shaped plumbing graph de-
picted on the right in Figurgl 1, where there arkegs emanating from the central vertex
of weight —r (and genush) and thei-th leg is a chain op; — 1 vertices (excluding the
central vertex) each with weight2. Since the intersection matrix of this last graph is neg-
ative definite, we conclude th&fj, ; is orientation-preserving diffeomorphic to the link of a
normal and hence isolated surface singularity by Graugm#erem. U

Let OB, ; denote the open book dn, ; whose page is a genis> 0 surface withr > 1
boundary components and monodromy is given as

et
wheret; is a right-handed Dehn twist along a curve parallel toittteboundary component
and let¢;, ; denote the contact structure which is supportedtsy, .

Lemma 4.2. The contact structurg, ; is the canonical contact structure af ;.

Proof. First we observe thal) ; admits a Seifert fibration over a closed oriented surface
of genush with r singular fibers with multiplicitie$,, ps, . . ., p,, respectively. Note that
an explicit open book transverse to the fibers of such a $difeation was constructed

in [32], which is indeed isomorphic to the open boO®%3,; on Y, ;. Moreover, it was
also shown([32] that the contact structure supported byojhés book is transverse to the
Seifert fibration. Furthermore, it is easy to see that thig@ct structure is invariant under
the naturalS* action induced by the fibration. This is because the pagdseodpen book
are S*-invariant by construction and contact planes can be degtlito be arbitrarily close

to tangents of the pages by allowing an isotopy of the comstagtture([10]. Thereforg, ;

has to be the unique Milnor fillable contact structureYgr by Propositio 2.1. O



The following was proved in [2]:

Proposition 4.3. Suppose that the closedmanifold X admits a genus: Lefschetz fi-
bration overS? with homologically nontrivial vanishing cycles. Lét,S,,...,S, ber
disjoint sections of this fibration with square®,, —p-, ..., —p,, respectively. Let” de-
note the4-manifold with boundary obtained froikd by removing a regular neighborhood

of theser sections union a nonsingular fiber. Th&nhadmits a PALF (positive allowable
Lefschetz fibration oveP?) and hence a Stein structure such that the induced contact
structureé;, ; on 9V =Y}, ; is compatible with the open bodkB,, ; induced by this PALF,
wherep = (p1,pe,...,pr). In other words,V is a Stein filling of the contac-manifold

(Yap s np)-
Now we are ready to state and prove the main result of thisosect

Theorem 4.4. There exist infinitely many Seifert fibered singularity $irdach of which
admits infinitely many exotic (homeomorphic but pairwise-ddfeomorphic) simply con-
nected Stein fillings of its canonical contact structure.

Proof. We will give a proof of this result in the following four parts

Part 1. A genusy Lefschetz fibration of£ P?#(4g + 5)CP2 Let &, be a closed ori-
entable surface of genys> 1. Lety,, 2, ..., 72441 denote the collection of simple closed
curves onx, depicted in Figuré€l2, and denote the right handed Dehn twists along the
curvey;. Let X (g, 1) denoteCP?#(4g + 5)CP2. The next result is well-known (cf[ 15,
Exercises 7.3.8(b) and 8.4.2(a)]).

Lemma 4.5. There is a hyperelliptic genug Lefschetz fibratiorf; : X (g,1) — S? with
gIObal monOdromY0102 s 029_102903g+1029029_1 s 0201)2 =1.

FIGURE 2. Vanishing cycles of the hyperelliptic genpkefschetz fibration
f1:X(g,1) = CP?*#(4g + 5)CP? — S?

The4-manifold X (g, 1) is diffeomorphic to the desingularization of the doublermtzed
cover of S? x S% with branch locus given as two copies $f x pt and2g + 2 copies of
pt x S2. Based on this description, it is easy to see tkia, 1) admits a “vertical” genus
g fibration with two singular fibers and a “horizontal” fibratievith S? as a regular fiber.
Moreover the vertical fibration can be locally perturbed lsat it becomes isomorphic to
the Lefschetz fibratiorf; : X (g,1) — S? as explained in [15, Exercise 8.4.2(c)]).
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Lemma 4.6. [35, Corollary 4.6]For anyg > 1, f; : X(g,1) — S? admits at leastlg + 4
disjoint (—1)-sphere sections.

We claim that the exceptional sphetreof thei-th blow up is a section of the Lefschetz
fibration f; : X(g,1) — S?for 2 < ¢ < 4¢g + 5. Let h denote the canonical generator
of Hy(CP? Z) and let[F] € Hy(X(g,1),Z) denote the homology class of the fiklérof
the Lefschetz fibratiorf; : X(g,1) — S2 Then, by [11, Lemma 3.3], we hay&] =
(g + 2)h — gey — €3 — -+ — eqqs5, Wheree; = [s;] denotes the homology class of the
spheres;. Since,[F]-e; = 1 (for 2 < i < 4g + 5) and the fiberF" and sphere; can
be chosen to be pseudo-holomorphic (so that they only etemositively), we conclude
that the exceptional sphesg intersects each genysfiber of the Lefschetz fibratiorf; :
X(g,1) — S? geometrically ones—which proves our claim.

Note that the fiber of the horizontal fibration above is a squaaro sphere iX (g, 1)
given by the homology clasls — ¢;, which intersects every fiber of, : X(g,1) — 52
twice.

Definition 4.7. We denote the:-fold fiber sum of the genus Lefschetz fibrationf; :
X(g,1) — S*by f, : X(g,n) — S

By sewing together the disjoirit-1)-sphere sections of, : X(g,1) — S? we obtain
4g + 4 disjoint (—n)-sphere sections of, : X (g,n) — S?. In order to prove Theorem 4.4,
we just focus onf, : X(g,2) — S? for ¢ > 2. When we fiber sum two copies ¢f :
X(g,1) — S%toobtainf, : X(g,2) — S?, we can also glue together square-zero sphere
fibers of the horizontal fibrations on each summand to cocsan embedded essential
torusT of square zero iX (g, 2). The outcome of Part 1 of our proof is that

Lemma 4.8. There is an embedded tordsin X (g,2) with two key properties: (i}’
intersects every fiber of the genyd efschetz fibratiory, : X(g,2) — S? at two points
and (ii) 7" has no intersection with thig; + 4 disjoint (—2)-sphere sections of this fibration.

Part 2. Fintushel-Stern knot surgeriet X (g, 2) x denote thel-manifold obtained from
X(g,2) by performing a Fintushel-Stern knot surgery on the tafusee Lemmé& 418) in
X (g,2) using a knotX C S? (cf. [12]). More precisely,

X(9,2)x = (X(g,2) \ (T x D*)) U (S" x (S*\ N(K)),

where we identify the boundary of a disk normalftavith a longitude of a tubular neigh-
borhoodN (K) of K in S®. Next we observe that,

Lemma 4.9. For any genus: fibered knotX, the surgeredi-manifold X (g, 2) x admits a
genus(g + 2k)-Lefschetz fibration withg + 4 disjoint (—2)-sphere sections.

Proof. The torusT" C X (g,2) on which we perform knot surgery intersects every fiber of
f2: X(g,2) — S? twice and a fiber of the Lefschetz fibration(g, 2)x — S? is obtained

by gluing one copy of the Seifert surface of the fibered kikoto each puncture of the
twice punctured fiber of, : X (g,2) — 52 (cf. [13]).
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Recall thate,, e, . . ., e4,15 denote the homology classes of the disjdintl)-sphere
sections off; : X(g,1) — S% When we fiber sum two copies ¢f : X(g,1) — S?, we
can glue corresponding-1)-sphere sections in the two summands to obtain 4 disjoint
(—2)-sphere sectionS,, S, . .., Si45 Of f2 : X(g,2) — S2. Note that thesé—2)-sphere
sections will remain as sections of the Lefschetz fibrafioig, 2)x — S?, since they are
disjoint from the surgery torus. O

Part 3. Construction of the simply-connected Stein fillings

Definition 4.10. For anyl < r < 4g + 3 and for any genug fibered knotK in S3,
the 4-manifold-with-boundary/ (¢, 7)x C X (g,2)x is obtained by removing a regular
neighborhood of- disjoint sectionsS,, Ss, ..., .S.11 union a nonsingular genus+ 2k
fiber of the Lefschetz fibratioX (g, 2)x — S? given in Lemma4.[o.

We would like to emphasize that we do not remove the sedigns.
Lemma 4.11. The4-manifoldV (g, r) x is simply-connected.

Proof. Observe that, by the Seifert-Van Kampen’'s theorem, the dorehtal group of
V(g,7)k is generated by the homotopy classes of loops based at samte;pe Sy, 5
that are conjugate to loops, i3, - - ., i1 andn normal to.S,, Ss, ..., S,.1, and to the
regular fiber we remove, respectively. Since all the loop$:s, . . ., 1.1, andy can be de-
formed to a point using the spheres represented by the homolasses. ;5 — ez, €445 —

es, ..., ei+5 — €41 and the sectiorby,, 5, respectively, we conclude th&t(g,r)x is
simply-connected. O
For any positive integer, let7 denote the-tuple (2,2, . . ., 2) for the rest of this section.

Then Proposition 413 coupled with Lemimal4.2 imply that

Lemma 4.12. The4-manifoldV (g, r) k is a Steinfilling of Yy o7 , £g+or7), Wherel o
is the canonical contact structure on the Seifert-fiberegsiarity link Y, o, 7.

Part 4. An infinite family of exotic Stein filling&ork > 2, let 7, = { K}, : i € N} de-
note an infinite family of genuk fibered knots in5? with pairwise distinct Alexander poly-
nomials, which exists by [17]. Then the infinite famiiX (g, 2)x, , : Ki; € Fi} consists
of smooth4-manifolds homeomorphic t& (g, 2) which are pairwise non-diffeomorphic
by a theorem of Fintushel and Stern[12]. Now we claim thaffifeed ¢ > 2, £ > 2, and
1 <r <4g+ 3, the infinite set

Sg,k,r = {V(gﬂﬂ)K;@,i : Kk,i € fk}

indexed byi € N, includes infinitely many homeomorphic but pairwise nofiedimorphic
simply-connected Stein fillings of the Seifert fibered silagity link (Y, or7 , {g+2k.7)-

In order to prove that these Stein fillings are pairwise nfeamorphic we just appeal
to Propositio 31, by observing that what we delete iy, 2)x, , to obtainV (g, )k, .,
is indeed diffeomorphic t&, ;o 7.
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Next we prove that infinitely many of the Stein fillingsdf) . are homeomorphic. We
first observe that all of these Stein fillings have the samertaliaracteristic by elementary
facts and the same signature by Novikov additivity. It feléothat the rank of the second
homology group of the fillings is fixed as well because thenfj§ are simply-connected.
Moreover, since the boundary of any Stein fillingSpy, , is diffeomorphic toY, .. > and
H,(Y 4017 ;Z) is infinite, we conclude that the determinant of the intetisecform of
any filling in S, 1., is zero. It follows that intersection forms of all the Steihirfgs in
S,k are isomorphic (see [15, Corollary 5.3.12 and Exercisel3(8)]). Furthermore, a
fixed symmetric bilinear form is realized as an intersecfimm by only finitely many
homeomorphism types of simply-connected compact oriettedhnifolds with a given
boundary|[8, Corollary 0.4]. Therefore the infinitely martgi8 fillings in S, . - belong to
finitely many homeomorphism types—which finishes the prddfteeoreni 4.4. O

5. EXOTIC STEIN FILLINGS WITH NON-TRIVIAL FUNDAMENTAL GROUPS

Our aim in this section is to explore the existence of nongdjmaonnected exotic Stein
fillings of some singularity links. Let be a positive integer. In this paper, we only study
the case when the fundamental group of the Stein fillings4sZ,,.

As an essential ingredient we use the family of non-holomigrgenusg Lefschetz
fibrations with fundamental group & Z,, constructed in [33] foy = 2 and generalized to
the casegy > 3 in [18]. For the purposes of this article we focus on the caserey > 3 is
odd and provide the necessary background for the convenadribe reader.

Definition 5.1. Let W (m) := %,, x S*#8C P2, whereX,, denotes a closed oriented genus
m surface.

Note thati¥ (m) is the total space of a genys= 2m + 1 Lefschetz fibration ove$?,
which was proved in [18, Remark 5.2] generalizing a classesult forg = 2 due to .
Matsumoto. The branched-cover description of this Lefscfibration can be given as
follows [13]: Take a double branched coverXf, x S? along the union of four disjoint
copies ofpt x S? and two disjoint copies of,,, x pt as shown in Figurgl 3.

The resulting branched cover has eight singular pointsesponding to the intersection
points of the horizontal spheres and the vertical genusurfaces in the branch set. By
desingularizing this singular manifold one obtal§m). Observe that a generic fiber of
the vertical fibration is the double cover Bf, branched over four points. Thus, a generic
fiber is a genug = 2m + 1 surface and each of the two singular fibers of the vertical
fibration can be perturbed inton + 6 Lefschetz type singular fibers.

Proposition 5.2. [18] The 4-manifold W (m) admits a genug Lefschetz fibration over
S? with 2¢ + 10 singular fibers such that the monodromy of this fibration igegiby the
relation

(boblbg e bga2b2)2 =1
whereb; denotes a right-handed Dehn twists alofig for: = 0,1,...,¢g anda and b
denote right-handed Dehn twists alongand 3 respectively (see Figule 4).
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FIGURE 3. The branch setik,, x S?

FIGURE 4. Vanishing cycles of the genys= 2m + 1 Lefschetz fibration
W(m) = %,, x S*#8CP? — S? corresponding t¢bbbs . . . bya?b?)? = 1.

Also, a generic fiber of the horizontal fibration is the douteer ofS? branched over
two points. This gives a sphere fibration Bn(m). We are now ready to state the main
result of this section.

Theorem 5.3. There exists an infinite family of Seifert fibered singuialinks such that
for each positive integet, each member of this family equipped with its canonical acint
structure admits infinitely many exotic (homeomorphic laitwise non-diffeomorphic)
Stein fillings whose fundamental grouisp 7Z,,.

Proof. Forg = 2m+1 > 3, letW,,(m) denote the total space of the Lefschetz fibration over
S? obtained by @wistedfiber sum of two copies of the Lefschetz fibratitin(m) — 52
along the regular genudfiber (cf. [33,18]). Notice that twisted fiber sum refers te fler
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sum where a regular neighborhood of a fixed regular fib&r ¢f) — S? is identified with
a regular neighborhood of a fixed regular fiber of another afgy’ (m) — S? by a non-
trivial diffeomorphism of the fiber. As shown inl[5], thereasdiffeomorphism involving
ann-fold power of a right-handed Dehn twist along a homolodycabntrivial curve on
the fiber such that,(W,,(m)) = Z & Z,,. Since inW (m) the generic fiber of the vertical
fibration intersects the generic fiber of the sphere fibratidwo points, after the fiber sum
we have an embedded homologically essential téro$ self-intersection zero ifV,,(m).
Notice that a regular fiber of the genugdibration oniV,,(m) intersectsl” at two points. It
was shown in[[19] that the Lefschetz fibration df(m) admits at least two disjoir{t-1)-
sphere sections, which implies that the Lefschetz fibraviofl/, () admits at least two
disjoint (—2)-sphere sections. The toriisabove can be chosen to be disjoint from these
(—2)-sphere sections.

Let W,,(m)x denote the result of the Fintushel-Stern knot surgery albadorusi” by a
knot K in S3. We observe that by Seifert-Van Kampen'’s theoren(\V,,(m) k) = Z S Z,,
since all the loops off’ are nullhomotopic ifV,,(m) andW,,(m) k.

Proposition 5.4. For any pair of positive integerén, n) and for any knotX in S3, the
4-manifoldW,,(m) . is homeomorphic toV,,(m).

Proof. The branched-cover description of thenanifold W (m), whose branch locus in
¥, x S% is depicted in Figur€l3, shows thét(m) admits a sphere fibration, and the
generic fiber of the genusLefschetz fibration o’ (m) intersects the generic fiber of the
sphere fibration in two points. Hence the untwisted fiber stitwo copies of the Lefschetz
fibrationW(m) — S? along the regular genusfiber, which we denote biy/;(m), admits
an elliptic fibration. Alternatively}¥,,(m) can be viewed as the fiber sum®f, x 77 and
the elliptic surfacer(2) where we identifypt x 7% C %, x T? with an elliptic fiber of
E(2). The elliptic fibration structure ofi/;(m) over the genug surface is induced from
the elliptic fibrations ofF(2) and,, x T2 via this fiber sum. Moreover, the manifold
W,(m) can be obtained froniV,(m) by a single Luttinger surgery along a Lagrangian
torus (for details, see [5]), disjoint from an elliptic fibeFherefore, W, (m) contains a
Gompf nucleus’; of E(2): Use a cusp fiber of the above mentioned elliptic fibration,
and a(—2)-sphere section obtained by sewing togeiher)-sphere sections of the sphere
fibration onW (m). Furthermore, the torus along which we perform Fintushehksknot
surgery can be assumed to lie in this cusp neighborhood.

Next we decomposé&/,,(m) into Cy Us2311) V(n, m) along the homology-sphere
¥(2,3,11), whereV (n, m) denotes the complement 6. Then, for any knotx” in S3,
we have a corresponding decompositioof(m)  into (Cy) k Us2,3,11) V(n, m), where
(Cy)k is an exotic copy ot (cf. [14]). SincedC; is a homology-sphere, by/[8, Corol-
lary 0.9], there exits a homeomorphism frdifi;) - to C, which restricts to the identity
map on the boundary. As a consequence, we have constructedesomorphism between
the4-manifoldsiV,,(m)x andW,,(m) which extends the identity map an(n, m). O
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Suppose thak is a fibered knot irt® of genusk. Then, a simple argument similar to the
one used in the proof of Lemrha 4.9 shows tHaf(m)x admits a genug + 2k = 2(m +
k) + 1 Lefschetz fibration ovet? with two disjoint (—2)-sphere sections. Recall that, in
Part4 of the proof of Theorern 414, for arly> 2, we denoted an infinite family of genés
fibered knots in5® with pairwise distinct Alexander polynomials b, = {K}.; : ¢ € N}.

Now let us fix a triple of positive integefsn, n, k), wherek > 2. By removing a tubular
neighborhood of a regular fiber and only one of the tw@)-sphere sections of the genus
2(m + k) + 1 Lefschetz fibration oiV,,(m)g, ,, we obtain an infinite family (indexed by
i € N) of Stein fillings of the Seifert fibered singularity li0K,,, 1)+1,(2) With its canonical
contact structure, such that each filling has= 7Z & 7Z,. We claim that these Stein
fillings are exotic copies of each other, i.e., they are athBomorphic but pairwise non-
diffeomorphic. The fact that these fillings are pairwise 1udifeomorphic follows from
Proposition 3.1 as in Pattin the proof of Theorern 414.

Finally, for fixed (m,n, k), we show that the Stein fillings described above with=
Z & 7Z, belong to the same homeomorphism type. We proved in Propo&t4 that
for fixed positive integersn and n, all the smooth4-manifolds in the infinite family
{Wa(m)k,, : Kri € Fi} belong to the same homeomorphism type, independent of
the knot K, ;. Now we simply claim that the knot surgery performed1df)(m) to ob-
tain W, (m) g, , essentially affects the complement of the removed neididmat of the
regular fiber union thé—2)-sphere section, and hence it does not have any effect on the
homeomorphism type of the “remaining” Stein fillings. So #tetegy is to start with a
homeomorphism of the closedmanifolds including the Stein fillings, and verify that it
will “descend” to a homoeomorphism of the Stein fillings whea remove a piece from
each after performing a Fintushel-Stern knot surgery.

More precisely, first note that i/, (m), a tubular neighborhood of the-2)-sphere
section is disjoint from the cusp neighborhood (see thefibBropositior 5.4) including
the torusl’ given above. Moreover, the cusp neighborhood intersedtsamubular neigh-
borhood of a regular fiber along two disjoint copies/®f x D?. Since the initial homeo-
morphism in Proposition 5.4 is identity on the complementhef cusp neighborhood, we
can delete these configurations, except the two copids?of D?, without affecting our

homeomorphism. Performing knot surgeryBturns these two disk bundles inIOQ x D?,
whereX, denotes a genussurface with one disk removed. Since any homeomorphism of

9(5, x D?) extends, we can delete these td x 35, as well so that the homeomorphism
descends to the Stein fillings. O

Corollary 5.5. For eachh > 7, the Seifert fibered singularity link, o) with its canonical
contact structure, o) admits

¢ an infinite family of exotic simply-connected Stein fillings

¢ for each positive integen, an infinite family of exotic Stein fillings whose funda-
mental group i< & Z,, and

o for each positive integet, a Stein filling whose first homology grougsd4—2 & Z,,.
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In particular, none of the Stein fillings in the last two iteere homeomorphic to a Milnor
fiber of the singularity.

Proof. Recall that, with respect to our notation in Secfibi4,) denotes the plumbing of
¥, x D? with an oriented circle bundle over? whose Euler number i2. It follows that
Yy, 2) is a Seifert fibered-manifold over a genus surface with a unique singular fiber of
multiplicity 2.

For anyh > 6, an infinite family of simply connected, homeomorphic buirpee
non-diffeomorphic Stein fillings of the singularity link, (2, &5, 2)) IS given in Theo-
rem[4.4. Similarly, according to Theordm 5.3, for any= ¢ + 2k > 7, and for each
positive integem, (Y3, (2),&x,2)) admits an infinite family of homeomorphic but pairwise
non-diffeomorphic Stein fillings with fundamental groéps Z,,. The third family of Stein
fillings is givenin [33]. In addition, none of the Stein fillys in the last two items are home-
omorphic to any Milnor fiber of the singularity, since a Milniiber of a normal surface
singularity has vanishing first Betti numbeér [16]. O

Acknowledgement The authors would like to thank the referee for his caredalding of
the manuscript and his/her suggestions that improved #septation greatly. This work
was initiated at the FRG workshop “Topology and InvariarftSmooth 4-manifolds” in
Miami, USA and was completed at the “Invariants in Low-Diragmal Topology and Knot
Theory” workshop held in the Oberwolfach Mathematics buséi in Germany. We are very
grateful to the organizers of both workshops for creatingry stimulating environment.
A. A. was partially supported by NSF grants FRG-0244663, DM85741 and a Sloan
Fellowship. B.O. was partially supported by the Marie Cuntrnational Outgoing Fel-
lowship 236639.

REFERENCES

[1] S. Akbulut, Topology of multiple log transforms of 4-manifoldisternat. J. Math. 24 (2013), no. 7,
1350052, 14 pp.

[2] S. Akbulut and B. OzbagciOn the topology of compact Stein surfackd, Math. Res. Not. 15
(2002), 769-782.

[3] S. Akbulutand K. Yasuilnfinitely many small exotic Stein filling® appear in J. Symplectic Geom.

[4] A. Akhmedov, J.B. Etnyre, T.E. Mark and I. SmitA, note on Stein fillings of contact manifolds
Math. Res. Lett. 15 (2008), no. 6, 1127-1132.

[5] A. Akhmedov and B. Ozbagci,Exotic Stein fillings with arbitrary fundamental group
arXiv:1212.1743.

[6] F. A. Bogomolov and B. de OliveireStein small deformations of strictly pseudoconvex sugace
Birational algebraic geometry (Baltimore, MD, 1996), 2%-Contemp. Math., 207, Amer. Math.
Soc., Providence, RI, 1997.

[7] F. BonahonDiffeotopies des espaces lenticulair@spology, 22 (1983), no.3, 305-314.

[8] S. Boyer, Simply connected 4-manifolds with a given bounddmans. Amer. Math. Soc. 298,
(1986), 331-357.

[9] C. Caubel, A. Némethi, and P. Popescu-Panigilnor open books and Milnor fillable conta8t
manifolds Topology 45 (2006), no. 3, 673—689.



13

[10] J. Etnyre,Lectures on open book decompositions and contact strigtkteer homology, gauge
theory, and low-dimensional topology, 103—-141, Clay M&ttec., 5, Amer. Math. Soc., Providence,
RI, 2006.

[11] R. Fintushel, J. Park and R. SteRational surfaces and symplectic 4-manifolds with onedasi
class Algebr. Geom. Topol. 2 (2002), 391-402.

[12] R. Fintushel and R. SterKnots, links, and: -manifolds Invent. Math. 134 (1998), no. 2, 363-400.

[13] R. Fintushel and R. Sterframilies of simply connected 4-manifolds with the samee®gilditten
invariants Topology 43 (2004), no. 6, 1449-1467.

[14] R. Gompf,Nuclei of elliptic surfacesTopology, 30 (1991), 479-511.

[15] R.E. Gompf, and A. I. Stipsicz, -manifolds and Kirby calculysGraduate Studies in Mathematics,
20. American Mathematical Society, Providence, RI, 1999.

[16] G. M. Greuel, and J. Steenbrin®n the topology of smoothable singulariti¢roc. of Symp. in
Pure Maths. 40 (1983), Part 1, 535-545.

[17] T. KanenobuModule d’Alexander des noeuds fsret polynme de Hosokawa des lacementgdibr
(French) [Alexander module of fibered knots and Hosokawgmmwhial of fibered links] Math.
Sem. Notes Kobe Univ. 9 (1981), no. 1, 75-84.

[18] M. Korkmaz,Noncomplex smooth 4-manifolds with Lefschetz fibrationsMath. Res. Not. IMRN,
(2001), no. 3, 115-128.

[19] M. Korkmaz,Lefschetz fibrations and an invariant of finitely presentemigs Int. Math. Res. Not.
IMRN (2009), no. 9, 1547-1572.

[20] Y. Kamishima and T. Tsubo{ZR-structures on Seifert manifoldavent. Math. 104 (1991), no. 1,
149-163.

[21] Y. Lekili and B. OzbagciMilnor fillable contact structures are universally tightlath. Res. Lett.
17 (2010), no. 6, 1055-1063.

[22] P. Lisca,On symplectic fillings of lens spac@sans. Amer. Math. Soc. 360 (2008), no. 2, 765-799
(electronic).

[23] P. Lisca and G. MaticTransverse contact structures on Seifert 3-manifoddgebr. Geom. Topol.
4 (2004), 1125-1144 (electronic).

[24] P. Massot|nfinitely many universally tight torsion free contact sttures with vanishing Ozéth-
Szald contact invariantsMath. Ann. 353 (2012), no. 4, 1351-1376.

[25] D. McDuff, The structure of rational and ruled symplectiemanifolds J. Amer. Math. Soc. 3
(1990), no. 3, 679-712.

[26] A. Némethi,On the canonical contact structure of links of complex stefaingularities Proceed-
ings of the Geometry of Singularities and Manifolds, Kus&608, (2009), 99-118.

[27] A. Némethi and P. Popescu-Pamg@un the Milnor fibres of cyclic quotient singularitigBroc. Lond.
Math. Soc. (3) 101 (2010), no. 2, 554-588.

[28] W. Neumann A calculus for plumbing applied to the topology of complexaste singularities
degenerating complex curvégans. AMS 268 (2) (1981), 299-344.

[29] H. Ohta and K. OnoSymplectic fillings of the link of simple elliptic singuldels J. Reine Angew.
Math. 565 (2003), 183—-205.

[30] H. Ohta and K. OnoSimple singularities and symplectic fillings Differential Geom. 69 (2005),
no. 1, 1-42.

[31] H. Ohta and K. OnoExamples of isolated surface singularities whose linksehafinitely many
symplectic fillingsJ. Fixed Point Theory Appl. 3 (2008), no. 1, 51-56.

[32] B. Ozbagci,Explicit horizontal open books on some Seifert fibered 3ifolals, Topology Appl.
154 (2007), no. 4, 908-916.

[33] B. Ozbagci and A.l. StipsicANoncomplex smoott#-manifolds with genu&-Lefschetz fibrations
Proc. Amer. Math. Soc., 128 (2000), no. 10, 3125-3128.



14 AKHMEDOV AND OZBAGCI

[34] B. Ozbagci and A.l. StipsicZZontact 3-manifolds with infinitely many Stein filling&oc. Amer.
Math. Soc., 132 (2004), no. 5, 1549-1558.

[35] S. TanakaOn sections of hyperelliptic Lefschetz fibratiddgebr. Geom. Topol. 12 (2012), no. 4,
2259-2286.

SCHOOL OFMATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MN 55455, USA,
AKHMEDOV @MATH .UMN.EDU

DEPARTMENT OFMATHEMATICS, KOC UNIVERSITY, SARIYER, 34450, BTANBUL, TURKEY,
BOZBAGCI@KU.EDU.TR



	1. Introduction
	2. Milnor fillable contact structures on Seifert fibered 3-manifolds
	3. Extending diffeomorphisms
	4. Singularity links with simply-connected exotic Stein fillings
	5. Exotic Stein fillings with non-trivial fundamental groups
	References

