ON THE TOPOLOGY OF FILLINGS OF CONTACT 3-MANIFOLDS
BURAK OZBAGCI

ABSTRACT. This is an expository article on the study of topology ofilst®/mplectic
fillings of contact3-manifolds.

1. FHLLINGS OF CONTACT MANIFOLDS

1.1. What is a Stein manifold?

Definition 1.1. A Stein manifold is an affine complex manifold, i.e., a compianifold
that admits a proper holomorphic embedding into sdire

An excellent reference for Stein manifolds in the contexsyrhplectic geometry is the
recent book of Cieliebak and Eliashbergl[19]. In the follog/ive give an equivalent defi-
nition of a Stein manifold.

Definition 1.2. An almost-complex structure on an even-dimensional miankas a com-
plex structure on its tangent bundieX, or equivalently a bundle map: T X — T X with

J o J = —idrx. The pair(X, J) is called an almost complex manifold. It is called a com-
plex manifold if the almost complex structure is integrabheaning that/ is induced via
multiplication by: in any holomorphic coordinate chart.

Example. The sphere5™ admits an almost complex structure if and onlgiE {2,6}. It
is easy to see thaft? is indeed complex, but currently it is not known whether ot 66
admits a complex structure.

Let ¢ : X — R be a smooth function on an almost complex manifakl .J). We
setd®¢ := dg¢ o J (which is al-form) and hencev, := —dd%¢ is a2-form which is
skew-symmetric (by definition). In general, may fail to beJ-invariant, i.e, the condition
wy(Ju, Jv) = wy(u, v) may not hold for an arbitrary almost complex structiréHowever,

Lemma 1.3.If J is integrable, themw, is J-invariant.

Proof. [19, Section 2.2] The claim can be verified by a local compoatThe Euclidean
spaceR?" with linear coordinate$zy, v, - . ., T,, y,) has a standard complex structufe
defined as
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The spacéR?", J) can be identifiedC", i) via z; = z; + iy;, where we use linear coor-
dinates(zy, ..., z,) for C* andi = y/—1 denotes the complex multiplication @f'. Let
¢ : R? = C"* — R be a smooth function. We calculate that

) )
dop = Z(%dx]—ir (bdy])

1,06 0 . 1 0 :
= S g i) + 5 (5 + 152 sy i)

Since|dz; o1 = z’dzj and |dz; o1 = —idz; |we have

¢ ¢ 8625 _ : A
dCp = Z dzj o+ 7z ——dzj01i) = ; (i o —dz; — (%j ——dz;) = i0¢ — 0.

Usingd = 0 + 0 we get
dd ¢ = (0 + 0)(i0¢p — i0¢) = —2i00¢p

and hencew,, = 2id0¢ |where more explicitly we can write

The formdd¢ is i-invariant since for allj, k, we observe that
dzj Ndz (iu,iv) = dzj(iu)dz,(iv) — dz;(iv)dzg(iuv)
iuj (=)0, — v, (—i)ug
= UV — VU
= dz; NdZ, (u,v).
It follows thatw, is i-invariant. O

Definition 1.4. Let (X, J) be an almost complex manifold. A smooth functianX — R
is called.J-convex ifw,(u, Ju) > 0 for all nonzero vectors, € T'X.

The conditionw,(u, Ju) > 0 is often described as, being positive on the complex
lines inT X, since for anyu # 0, the linear space spanned bynd.Ju can be identified
with C with its usual orientation.
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Let g, be the2-tensor defined by, (u, v) := wy(u, Jv). The J-convexity condition in
Definition[1.4 is indeed equivalent tp, being positive definite, i.eg;(u, w) > 0 for any
nonzero vecton € T'X.

Lemma 1.5. If w, is J-invariant, theng, is symmetric and{,, := g4 — iw, is a Hermitian
form.

Proof. The2-tensorg, is symmetric since:
go(u,v) = wy(u,Jv) (by definition
= wy(—J*u,Jv) (J*=—Id)
= wy(—Ju,v) (w, is J-invariany
= —wy(v,—Ju) (w, is skew-symmetric
= —gs(v,—u) (by definition
gs(v,u) (g is bilinear).
It is clear thatH, is R-bilinear, sincey, andw, are bothR-bilinear. Now we verify that
H, is complex linear in the first variable:

Hy(Ju,v) = gp(Ju,v) —iwy(Ju,v)
) + iws(

and we check that

Hy(v,u) = go(v,u) +iwg(v, u)
= g¢>(u7 U) - iw¢(u7 U)
= H¢(U,U>.

U

Combining Lemma1]3 and Lemrhall.5, we conclude that a smaottibng : X — R on
anycomplexmanifold (X, J) is J-convex if and only if the Hermitian forn#/,, is positive
definite.

Lemma 1.6. A smooth functiom : C* — R isi-convex if and only if the Hermitian matrix
¢ | . " -
is positive definite.
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D¢
&zjﬁzk

Proof. We seth;, := and compute

we(u,v) = 21 Z h;kdz; N dzg(u, v)
= 2 Z hjg(dzj(w) A dz(v) — dz;(v) A dz(u))
= 2 Z hj,k: UjT)k — Ujﬂk)
b
= 2 Z hj,kujq_)k — 0 Z thg’Uj’l_Lk
j?k ]7k
= 2 Z hj,kujq_)k — 2 Z ?LkJ’Uj’I_Lk (Usedﬁkd = thg)

= 20 ) hjgu;p —2i Y b, (Switchedj < k in the second sum

= —4 |m( Z hjku]‘@k)

J.k
and hence it follows that
Hy(u,v) = gp(u,v) —iwg(u,v) =4 Z ROy,

g,k
Therefore we conclude that the Hermitian fofify is positive definite (i.eH(u,u) > 0
2¢

for all u # 0) if and only if the Hermitian matm(
2k

) is positive definite. O

Definition. Any real valued smooth function oK is called exhausting if it is proper and
bounded below.

Lemma 1.7. Every Stein manifold admits an exhaustihgonvex function.

Proof. We claim that the map : C¥ — R defined as)(z) = |z|* is an exhausting-
convex function orC" with respect to the standard complex structureCY — C¥. To
see that is i-convex we simply observe that

82¢ 82k
szzj and 92,05 8,2]- = 0.
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0?¢
82j82k
and¢(z) > 0, its restriction to any properly embedded holomorphic sabifiold of C? is
an exhausting-convex function. O

Thus( ) is the identity matrix which is obviously positive definit®ince¢ is proper

The converse of Lemnmal.7 is due to Grauert:

Theorem 1.8(Grauert[47]) A complex manifoldX, J) is Stein if and only if it admits an
exhausting/-convex functior : X — R.

Remark. The classical definition of a Stein manifold originates frtéra concept of holo-
morphic convexity. We refer tg [19, Section 5.3] for an exiga discussion on the equiv-
alence of the affine definition, the definition usifigconvex functions (Theorem_1.8) and
the classical definition of a Stein manifold.

Every exhausting/-convex function on a Stein manifold(, /) becomes an exhausting
J-convexMorsefunction by aC?-small perturbation. The following result of Milnor puts
strong restrictions on the topology of the Stein manifolds.

Proposition 1.9(Milnor). If (X, J) is a Stein manifold of real dimensi@n, then the index
of each critical point of a/-convex Morse function oX is at most equal ta.

Therefore, ifX is a smooth manifold of real dimensi@n, a necessary condition for
X to carry a Stein structure is that its handle decomposita@sdot include any handles
of indices greater than. Note that there is another obvious necessary conditioe—th
existence of an almost complex structure ¥n Eliashberg proved that, for > 2, these
two necessary conditions are also sufficient for the extgt@fia Stein structure:

Theorem 1.10(Eliashberg[[2B]) Let X be a2n-dimensional smooth manifold, whete>

2. Suppose thak admits an almost complex structuve and there exists an exhausting
Morse functionp : X — R without critical points of index> n. Then.J is homotopic
through almost complex structures to a complex structlireuch thaty is J’-convex. In
particular, the complex manifoldX, .J) is Stein.

For the case = 2, the corresponding result is described in Thedrem 2.4.

1.2. Symplectic geometry of Stein manifolds.In the following, we briefly explain how
symplectic geometry is built into Stein manifolds.

Definition 1.11. A symplectic form on a@n-dimensional manifoldX is a differential2-
formw that is closed dw = 0) and non-degenerate, meaning that for every nonzero vector
u € TX there is a vectow € T'X such thatw(u,v) # 0. The pair(X,w) is called a
symplectic manifold. A submanifotd C X is called symplectic i&v|s is non-degenerate
and it is called isotropic if for alp € .S, T,,S is contained in itsu-orthogonal complement
inT,X.
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Remark. The non-degeneracy condition in Definition 1.11 is equivete w™ # 0, where
w™ denotes then-fold wedge product A ... A w. A symplectic manifold X", w) has a
natural orientation defined by the non-vanishing top fartn We will always assume that
a symplectic manifold X?", w) is oriented such that™ > 0. It follows that an orientable
closed manifoldX?" can carry a symplectic form only if 7%(X,R) is non-trivial, since
any[w] # 0 € H?(X,R). The spheres™, for example, is not symplectic for > 2.

Definition 1.12. We say that a symplectic formon an even dimensional manifold is
compatiblewith an almost complex structuré if w is J-invariant andw tames/J, i.e.,
w(u, Ju) > 0 for all nonzero vectors € T'X.

It is well-known (see, for example, [66, [17]) that

Theorem 1.13.For any symplectic manifoldX, w), there exists an almost complex struc-
ture on X compatible withw and the space of compatible almost complex structures is
contractible.

Remark. This statement in fact holds true for any symplectic vectordde over a smooth
manifold, since only the non-degeneracy of the farns used in the proof.

Suppose thatX, J) is acomplexmanifold. Since for any) : X — R, the 2-tensor
gs is symmetric as we showed in Sectionl1¢lis J-convex if and only ifg, defines a
Riemannian metric oX. This is indeed equivalent to requiring thaj is non-degenerate
(and hence a symplectic form compatible with

Definition 1.14. A vector fieldV on a symplectic manifoldX, w) is called a Liouville
vector field if£yw = w, whereL stands for the Lie derivative.

Suppose thatX, J, ¢) is a Stein manifold. LeV ¢ denote the gradient vector field with
respect to the metrig,, which is uniquely determined by the equation

dp(u) = go(Vé,u).
Define thel-form oy 1= tygws, thatis,as(v) = we(Ve,v). (Thel-form oy is wy-dual to
the vector fieldV¢.) It follows that

Lemma 1.15. The gradient vector fiel¥ ¢ is a Liouville vector field fotv,.
Proof. To see this we first observe that

(tvows) (V) = ws(V,v) = —gs(V, Jv) = —dp(Jv) = —(d°¢)(v).
Thus, by Cartan’s formula, we have

Lygws = d(1yewy) + tvsdws = d(iygwy) = —d(d¢) = w,.
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Note that a generid-convex function is a Morse function. Moreover, for an ex$tag
J-convex Morse functio : X — R on a Stein manifold.X, .J), the gradient vector field
V¢ may be assumed to be complete, after compaosibyg a suitable functioR — R.

Definition 1.16. A Weinstein structure onZzn-dimensional manifol is a triple (w, V, ¢),
wherew is a symplectic formyp : X — R is an exhausting Morse function afdis a com-
plete Liouville vector field which is gradient-like for The quadruplé X, w, V, ¢) is called
a Weinstein manifold.

We conclude that every Stein manifdldl, J, ¢) is a Weinstein manifold.X, w,, Vo, ¢).
Moreover, the symplectic structure defined above on a Stemifoid (X, J) is independent
of the choice of the/-convex function in the following sense:

Theorem 1.17.[19, Chapter 11] et ¢; be an exhausting-convex Morse function on a
Stein manifold X, J) such thatV¢; is complete foj = 1, 2. Then(.X, wy, ) is symplecto-
morphic to(X, wy, ).

Definition 1.18. Two symplectic manifoldsX;, w;) and (X,, w,) are said to be symplec-
tomorphic if there exists a diffeomorphisgm X; — X, such thatp*w, = w;.

Remark. We would like to point out thad Stein manifold is non-compactn fact, no
compactcomplex manifold of complex dimension at least one can benaptex analytic
submanifold of any Stein manifold. This is becaus@/ifis a compact analytic subman-
ifold of a Stein manifold, then each coordinate function@h restricts to a nonconstant
holomorphic function on\/ which is a contradiction unles¥ is zero-dimensional.

1.3. Contact manifolds. The reader is advised to turn 1o [40] for a thorough discussio
about the topology of contact manifolds.

Definition 1.19. A contact structure on &n + 1)-dimensional manifold” is a tangent
hyperplane field = ker « C T'Y for somel-form a such thatv A (da)™ # 0. Thel-form
« is called a contact form and the pa(t’, £) is called a contact manifold.

Note that the condition A (da)™ # 0 is independent of the choice afdefining¢, since
any otherl-form defining¢ must be of the formh.«, for some non-vanishing real valued
smooth functiorh onY and we have:

(ha) A (d(ha))™ = (ha) A (hda + dh A @)™ = K" (a A (da)™) # 0.

In this article, we assume thatis global 1-form, which is equivalent to the quotient
line bundleTY /¢ being trivial. In this case, the contact structgre= ker o« on'Y is said
to be co-orientableand Y is necessarily orientable sineeA (da)™ is a non-vanishing
top-dimensional form, i.e., a volume form dh Moreover¢ is calledco-orientedif an
orientation for7'Y /¢ is fixed. WhenY is equipped with a specific orientation, one can
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speak of gositiveor anegativeco-oriented contact structu¢enY’, depending on whether
the orientation induced by agrees or not with the given orientationof

In terms of the defining-form «, the contact condition in Definitidn_1.119 is equivalent
to da|¢ being non-degenerate. In particul@, do|¢) is a symplectic vector bundle, where
for any co-oriented contact structufethe symplectic structure of) is defined uniquely
up to a positive conformal factor.

All the contact structures in this paper are assumed to biéyeoand co-oriented.

Definition 1.20. Two contact manifoldgy;, ;) and(Y>, &) are said to be contactomorphic
if there exists a diffeomorphism: Y; — Y5 such thatp, (&) = &.

Example 1.21.In the coordinate$xy, y1, . . ., T, Yn, ), the standard contact structuge,
onR?"*! can be given, up to contactomorphism, as the kernel of artyedfforms

i=1
dz — i y; dx;
i=1

i=1 i=1
where, for the last equality, we used the polar coordingted),) in the (z;, y;)-plane.

An important class of submanifolds of contact manifoldsiieg by the following defini-
tion.

Definition 1.22. A submanifoldZ of a contact manifoldY*"*1 ¢) is called an isotropic
submanifold iff}, L. C &, for all p € L. An isotropic submanifold of maximal dimension
is called a Legendrian submanifold.

1.4. What is a Stein/symplectic filling?

Definition 1.23. A closed contact manifol@, £) is said to be strongly symplectically fil-
lable if there is a compact symplectic manifgld’, w) such thatow = Y as oriented
manifolds,w is exact near the boundary and its primitiwecan be chosen in such a way
thatker(a|,.) = €. In this case we say thatV, w) is a strong symplectic filling oY, €).

Definition 1.24. We say that a compact symplectic manifgid, w) is a convex filling of
closed contact manifol@”, €) if 01 = Y as oriented manifolds and there exists a Liouville
vector fieldV defined in a neighborhood af, pointing out ofi¥ along Y, satisfying

¢ = ker(ywly). In this case(Y,¢) is said to be the convex boundary @V, w). If V'
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points intoll” alongY’, on the other hand, then we say th{&t, w) is a concave filling of
(Y, ¢) and(Y,¢) is said to be the concave boundary(f, w).

It is easy to see that the notion of a convex filling is the samtha notion of a strong
symplectic filling: Given a convex filling, define tHeform « := +yw nearY and observe
thatda = w by Cartan’s formula. Conversely, given a strong symplddtiog, one solves
the equationy := 1w for V near the boundary, and observes th&t is a Liouville vector
field again by Cartan’s formula.

Lemma 1.25.1f V is a Liouville vector field for a symplectic formon a manifoldX, then
the1-forma := 1ywly is a contact form on any hypersurfatein X transverse td/.

Proof. The form

aA (da)" = 1yw Aw™ = vy (W)

n+1
restricts to a volume form on any hypersurfaCén X transverse td’. O

Suppose thatX, J, ¢) is a Stein manifold. Then, a regular level get (¢) is a compact
hypersurface inX' which is transverse to the Liouville vector fie¥dy for the symplectic
formw,. Thereforen, restricts to a contact form afr ' (¢) and the sublevel set! (—co, ¢]
is a special kind of strong symplectic filling of the contacamifold (¢(t), ker(c)),
which leads to the following definition.

Definition 1.26. A compact complex manifoldV, J) with boundaryoi/" = Y is a Stein
domain if it admits an exhausting-convex functior : W — R such thatY” is a regular
level set. Then we say that the contact manifolds = ker(ay|y)) is Stein fillable and
(W, J) is a called a Stein filling of it.

Remark. A Stein filling is a strong symplectic filling, where the syraplic form is exact,
becausé/¢ is a Liouville vector field forw, as was shown in Lemnia 1]15.

We can describe the contact structitee(a,;) on the hypersurface!(¢) with another
point of view as follows. LetY” be a oriented smooth real hypersurface incamplex
manifold (X, J). The complex tangencigs := 7Y N J(TY) alongY form a unique
complex hyperplane distribution iiY. The complex orientation of, together with the
orientation ofY gives a co-orientation tg, and henc& = ker a for somel-form «,
where« defines the given co-orientation. Thevi formof Y is defined asvy (u,v) :=
dale(u, Jv). Note that by taking the co-orientation ®f into accountwy is defined up
to multiplication by a positive function. The hypersurfacas called./J-convexf its Levi
form is positive definite, i.ewy (u, Ju) > 0 for every non-zera: € £. This implies that
IS a contact structure o sinceda is non-degenerate gn
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We say that a compact complex manifgld’, /) with J-convex boundary” is aholo-
morphic fillingof its contact boundargy’, ). It turns out that, if X, J, ¢) is any Stein man-
ifold, andt is a regular value of : X — R, thenwy (u, v) = wy(u,v), whereY = ¢~1(¢).
This implies that a Stein filling is a holomorphic filling.

The upshot is that every regular level set of-aonvex function on a Stein manifold is a
J-convex hypersurface equipped with a contact structurengby the complex tangencies
to the hypersurface.

Theorem 1.27(Bogomolov and de Oliveira [16])If (W, J) is a minimal compact com-
plex manifold ofcomplex dimensior2 with J-convex boundaryoW, ¢), thenJ can be
deformed to/’ such that IV, .J') is a Stein filling of( OW, ¢).

In particular, a closed contagtmanifold is Stein fillable if and only if it is holomorphi-
cally fillable—which is not true in higher dimensions. Thesealso the notion of a weak
symplectic filling which we will discuss only fos-dimensional contact manifolds. We
refer the reader to [64], for the detailed study of weak vertrong symplectic fillings of
higher dimensional contact manifolds.

Definition 1.28. A contact3-manifold (Y, ¢) is said to be weakly symplectically fillable if
there is a compact symplectic 4-manif¢ld’, w) such thabW = Y as oriented manifolds
andw|, > 0. In this case we say thatV, w) is a weak symplectic filling dt’, £).

2. COMPLEX DIMENSION TWO. STEIN SURFACES AND CONTACT3-MANIFOLDS

For the rest of this paper, we focus on the topology of comglelkmensional Stein
manifolds (namely, Stein surfaces) and congantanifolds. We assume that all the contact
structures are co-oriented and positive.

We begin with describing topological counterparts—Le&gzHibrations and open books
for the sake of completeness. In the following, we assumiettieareader is familiar with
smooth, contact and symplectic surgery (cf. [40,/46, 75]).

Throughout the paper, we will denote a positive Dehn twikia@a curvey by D(v),
and we will use the usual composition of functions for expmesg the products of Dehn
twists. In addition, we will usé™(~) to denotg D(~))" for any integem.

The mapping class group',, of an oriented compact surfade of genusg > 0 with
r > 0 boundary components is defined to be the group of isotopgetasf orientation-
preserving self diffeomorphisms df fixing the points on the boundary. The isotopies
are also assumed to fix the boundary pointwise: # 0, we sometimes drop from the
notation and us€,, to denote the mapping class group of a closed gegrausface.

2.1. Lefschetz fibrations and open books.Suppose thatl’ and are smooth oriented
manifolds possibly with nonempty boundaries of dimensions and two, respectively.
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Definition 2.1. A smooth maygf: W — 3 is called a Lefschetz fibration jf has finitely
many critical points in the interior of//, and there are orientation preserving complex
chartsU, V' around each critical poinp andg = f(p), respectively, on whiclf is of the
form (21, zp) — 22 + 22.

For each critical valug € ¥, the fiberf~1(q) is called asingularfiber, while the other
fibers are calledegular. Throughout this paper, we will assume that a regular fiber is
connected and each singular fiber contains a unique crgaat. It is a classical fact that
for any loopa in X that does not pass through any critical values and thatdesla unique
critical value in its interiorf ~!(a) is a surface bundle over which is diffeomorphic to

(F" < [0, 1) /((1,2) ~ (0, D(7)(x))

where~ denotes theanishing cycleon a smooth fibeF’ over a point on the loop. The
singular fiber which is the inverse image of an interior paiht is obtained by collapsing
the vanishing cycle to a point.

In this paper, we will mainly use Lefschetz fibrations with= D? or S%. Suppose first
thaty = D? and choose an identification of the regular fiber, say overealfbase point
b neardD?, with an (abstract) oriented connected surfatef genusg > 0 with r > 0
boundary components. Now choose an arc that connects thebdoi each critical value
so that these arcs are pairwise disjoinbDih Label these arcs by the sti, c,, ..., ¢, } in
the increasing order as you go counterclockwise directronrad a small loop around the
base poinb, and label the critical values dg1, ¢», . . ., ¢, } corresponding to the labeling
of the arcs as depicted in Figure 1. Consider a lopground the critical value;, which
does not pass through or include in its interior any otheicalivalues and let; denote the
corresponding vanishing cycle.

FIGURE 1.
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Note thatf ! (9D?) is an F-bundle ove§' = 9D?* which is diffeomorphic to
(F" < [0,1])/((1,z) ~ (0,¢(x))

for some self-diffeomorphisn of the fiberF' preserving) F' pointwise. It follows that

¢ = D(m)D(Yn-1) - D(m) € Ty

The product of positive Dehn twists above is called@nodromy factorizatioar apositive
factorizationof the monodromy) € T',, of the Lefschetz fibration oved?. Conversely,
a positive factorization of an element I, determines a Lefschetz fibration ove?,
uniquely up to some natural equivalence relations which xpdagn next.

If one chooses a different identification of the referencerfitver the base point with
the abstract oriented surfa¢g then the monodromy of the Lefschetz fibration takes the
form ¢yp~!, wherey is the appropriate element f,,. In this case, the monodromy
factorization appears as

et = o(D(yn)D(Yn-1) - D(m)) "
= DY) oD (Y1) - @ oD ()
= D(¢(7m))D(¢(Vn-1)) - - - D(¢(n)),

where the last equality follows by the fact that the conjigratoD(v)» ! of a positive
Dehn twistD(~) is isotopic to the positive Dehn twig(p(7)).
Note that the trivial identity

D(Yix1)D(7i) = (D(vis1) D(v:) D~ (i41)) D (i)

would also allow us to modify the monodromy factorizationaotefschetz fibration by
switching the order of two consecutive positive Dehn twisteere we conjugate one by
the other. Such a modification is calledHairwitz moveand obtained by switching the
order of two consecutive arcs connecting the base pointiticadrvalues that we chose
to describe the monodromy factorization. Tieemorphism clasef a Lefschetz fibration
(overD?) is determined up to global conjugation and Hurwitz movest firther details
we refer to[46, Chapter 8].

Now suppose thatlV = 0, andf : W — S? is Lefschetz fibration, where the gengs
fiber F' is necessarily closed. We may assume that all the critidakgeof f lie on a disk
in the basé?, and the fibration is trivial on the complementary disk. ltdavs that in this
case, the monodromy factorization satisfies

D(y)D(Yp-1) -+ D(m) =1 €T,

We now turn our attention to the cad&l’ # () andYX = D?. Under the assumption
thatdF # (), the boundarW consists of two parts: The “vertical” boundafy ! (0D?)
and the “horizontal” boundarp ' x D? that meet each other at the corrdr x OD?.
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After smooothing out the corners, we see that acquires an open book decomposition
by which we mean the following:

Definition 2.2. An open book decomposition of a closed and oriesteganifoldY” is a
pair (B, f) consisting of an oriented linB C Y, and a locally-trivial fibrationf: Y —
B — S! such that each component Bfhas a trivial tubular neighborhood x D? in
which f is given by the angular coordinate in tfi-factor.

Here B is called the binding and the closure of each fiber, which igige8 surface for
B, is called a page. We orient each page so that the inducedtati@ on its boundary
agrees with that of fixed orientation of the bindiBg

The (geometricmonodromyof an open book is defined as the self-diffeomorphism of
an arbitrary page —identified with an abstract oriented gent 0 surfaceF with r > 1
boundary components—which is given by the first return map\adctor field that is trans-
verse to the pages and meridional nBamNote that, up to conjugation, the monodromy of
an open book is determined as element jn. It is clear that the monodromy of the open
book on the boundary of a Lefschetz fibration can be identigl the monodromy of the
Lefschetz fibration.

2.2. Open books and contact structures.

Definition 2.3. A contact structuré on a closed oriented-manifoldY” is said to be sup-
ported by the open bodlB, f) if there is a contact forna for £ such thato|r5 > 0 and
dag-1(9) > 0, for eachd € S'.

Remark. A contactl-form « satisfying the conditions above is sometimes called a Girou
form.

In [87], Thurston and Winkelnkemper constructed a contaonfon a3-manifold Y
using an open book decompositiontdf Their construction was refined by Giroux showing
that an open book supports a unique contact structure, \gotogy.

Conversely, for any given contact structyren a 3-manifold, Giroux [44] constructed
an open book supporting As a matter of fact, Giroux established a bijection betwiben
set of isotopy classes of contact structures on a cl@sednifold Y and the set of open
book decompositions df, up to positive stabilization/destabilization.

Giroux’s correspondence is of central importance in thgesitlat hand, and we refer to
Etnyre’s elaborate lecture notés [35] for details.

2.3. Stein domains and Lefschetz fibrations.Before we state a topological characteri-
zation of Stein domains due to Eliashberg and Gompf, we makesimple preliminary
observations: By attaching 1-handles to &-handle we obtain,,S* x D? whose bound-
ary is#,,S* x S2. Eliashberg([23] showed that,S' x D? admits a Stein structure so that
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it is a Stein filling of#,,S5! x S? equipped with its standard contact structure. The follow-
ing theorem is a key result in the subject which made the stdid@tein surfaces/domains
accessible to low-dimensional topologists.

Theorem 2.4(Eliashberg[28], Gomgf[45])A smooth handlebody consisting di-handle,
somel-handles and som&handles admits a Stein structure if tdrandles are attached
to the Stein domaif,, S' x D? along Legendrian knots in the standard contggt S x S?
such that the attaching framing of each Legendrian knot-isrelative to the framing
induced by the contact planes. Conversely, any Stein doadkmts such a handle decom-
position.

Similar to the handle decomposition of a Stein domain dbedrin Theorerh 214, there
is a handle decomposition of a Lefschetz fibration dvérconsisting a)-handle, some
1-handles and som&-handles as follows: A neighborhodd x D? of a regular fiberF
is given by attaching appropriate numberleiandles to @-handle. This is because the
surfacef’ can be described by attachigdglimensionall-handles to -dimensional disk,
andF x D?is a thickening of this handle decompositiordidlimensions.

Then, since each singularity of a Lefschetz fibration is nielen complex Morse func-
tion (21, z2) — 27 + 22, for each singular fiber, 2zhandle is attached t8 x D? along the
corresponding vanishing cycle. The crux of the matter istti@attaching framing of each
such2-handle is—1 relative to the framing induced by the fiber. Therefor@if— D? is a
Lefschetz fibration, thefl” has a handle decomposition

W=(FxD*)UH, U---UH,

where, for eachl < i < n, the2-handleH; is attached along the vanishing cyele
One can easily compute some basic topological invariantiseof-manifold 1/, using its
corresponding cell-decomposition. Letdlenote the Euler characteristic.

Lemma 2.5. The first integral homology grouff; (W, Z) is isomorphic to the quotient of
H,(F,Z) by the normal subgroufiv1], . . ., [v.]) generated by the homology classes of the
vanishing cycles. Moreovey(W) = x(F) + n.

Definition 2.6. We say that a Lefschetz fibration o\t is allowable if the regular fiber
has nonempty boundary and each vanishing cycle is homalibgitontrivial on the fiber.

Next we show that if/’ — D? is an allowable Lefschetz fibration th&r admits a Stein
structure (cf.[[2, 63]) so that the induced contact strietmolV is supported by the open
book induced by the Lefschetz fibration. Suppose thaadmits a handle decomposition
as in the previous paragraph andligét — D? denote the Lefschetz fibration so that

We will show thatl¥ admits a Stein structure by induction. Suppose tat; admits a
Stein structure so that the induced contact structur@ldin ;, is supported by the open
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book induced by the Lefschetz fibratid#,_, — D?. By the work of Torisu([88], we can
assume the open book hasanvexpage that contains the attaching cusyef the2-handle
H;. Moreover, by thd_egendrian Realization Principlil9], v; can be made Legendrian
so that the framing induced by the contact planes agreesthathof induced from the
page of the open book. This is precisely where we require #fechetz fibration to be
allowable since Legendrian Realization Principle only kedfior homologically nontrivial
simple closed curves. As a consequerite,= W, _; U H; admits a Stein structure, by
Theoreni Z.4.

Furthermore, the induced contact structureddfi; is supported by the induced open
book by Proposition 217, since the effect of attachinyeinsteirz-handle alongy; corre-
sponds to Legendrian surgery along the same curve on thaatd@undaryV;.

Proposition 2.7 (Gay [39]) SupposegY, ¢) is a contact3-manifold supported by the open
book with page” and monodromy . Then the contact manifold obtained by performing a
Legendrian surgery on a kndt contained in some page is is supported by the open book
with the same pag€ and monodromy o D(L).

For the initial step of the induction we just observe thak D? =~ f,,S! x D3 admits a
Stein structure so that it is the Stein filling of the standardtact structure on its boundary
#,,51 x S? (see Section 412).

Conversely, a Stein domain admits an allowable Lefschetatfdn overD? which was
proved in[2] 3] and [63]. By a refinement of the algorithmliih, [Rlamenevskaya showed,
in addition, that the induced contact structure on the baonid supported by the resulting
open bookl[76, Appendix A]. This leads to the following topgical characterization of
Stein domains.

Theorem 2.8. A Stein domain admits an allowable Lefschetz fibration @#and con-
versely an allowable Lefschetz fibration oVt admits a Stein structure. Moreover the
contact structure induced by the Stein structure on the Hagnis supported by the open
book induced by the Lefschetz fibration.

2.4. The adjunction inequality for Stein surfaces.

Theorem 2.9(Lisca-Matic [59]) A Stein filling(W, w,) admits a holomorphic embedding
as a domain inside a minimal complex surfa€eof general type, witth; (X) > 1, such
thatwx|w = ws, Wherewx denotes the &hler form onX.

An immediate corollary of Theorem 2.9 and Seiberg-Wittegotty is an adjunction in-
equality :

Theorem 2.10([1} [6Q]). If W is a Stein domain, an& C W is a closed, connected,
oriented, embedded surface of gegughen

(S + (e (W), [E])] < 29 — 2
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unlessY: is a null-homologous sphere, whergW) := ¢, (W, J) € H*(W, Z) denotes the
first Chern class.

Corollary 2.11. A Stein surface cannot contain a homologically essentiaathly em-
bedded spher§ with [S]> > —1.

3. A BASIC PROBLEM

A strong symplectic filling of a contact-manifold is a weak symplectic filling since
da is a symplectic form on the contact planes= ker a for any contactl-form «. The
converse is shown to be true for rational homology spheres:

Theorem 3.1.[25] [71] [27, Prop. 4.1Suppose thatlV, w) is a weak symplectic filling of
(Y, &), whereY is a rational homology sphere. Thencan be modified to a new symplectic
form @, where this modification is supported in a neighborhooddf, so that(W, )
becomes a strong symplectic filling(af, ¢).

Nevertheless, for an arbitrary closed contaahanifold we have
{Stein fillings} C {strong symplectic fillings C {weak symplectic filling$

where the inclusions are shown to be strict for some costacanifolds:

¢ Eliashbergl[26] showed that there are weakly but not stypoaginplectically fillable
contact structures oit®, and further examples of this kind were given on torus bundle
over the circle by Ding and Geiges [21].

e Using the contact Ozsvath-Szabo invariants, Ghiggid] groved that for any even
positive integem, the Brieskorn3-sphere—33(2,3,6n + 5) (see [75] for its definition)
admits a strongly symplectically fillable contact struetwhich is not Stein fillable.

Definition 3.2. We say that two symplectiemanifolds(W;,w;) and (W, wy) with con-
vex boundary are symplectically deformation equivaletihéfe is a diffeomorphism :
W1 — W5 such thatp*w, can be deformed t@, through a smooth 1-parameter family of
symplectic forms that are all convex at the boundary.

As a consequence of the above discussion, the followingg@mohrises naturally in the
study of the topology of fillings of contagtmanifolds:

Basic Problem: Given a closed contact-manifold, describe all of its Stein (or minimal
strong/weak symplectic) fillings up to diffeomorphism fonplectic deformation).

To begin with, we need to know that the given contacbanifold (Y, ) admits at least
one weak symplectic filling. However, some oriented clos@danifolds can not admit any
symplectic fillings at all. For example,
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Theorem 3.3(Lisca [56]) The Poincaé homologys-sphere with its natural orientation
reversed admits no fillable contact structure.

Proof. Let £ denote thei-manifold with boundary obtained by plumbing oriented disk
bundles over the sphere according to the posiiyeliagram. TherdFE is diffeomorphic
to — P, whereP denotes the Poincaré homology sphere with its naturahtaiien.

2 2 2 2 2 2 2

2

FIGURE 2. The positivel’g diagram

Suppose thatV is a symplectic filling of—-P = 9FE. ThenW/ can be symplectically
embedded into alosedsymplectic4-manifold such thaby (X \ int(1¥)) > 0, by Theo-
rem3.5. Since”? = ¥(2,3,5) admits a positive scalar curvature metric, a standardtresul
from gauge theory [93] implies thag (W) = 0. HencelW U (—F) is a negative definite
closed smoothi-manifold, which can not exist by Donaldson’s famous diagjizability
result [22]. O

Remark 3.4. Lisca [57] proved the same result for the boundaries of the plumbings ac
cording to the positivé”; and Es diagrams.

Theorem 3.5(Eliashberg([2]7], Etnyre [34])Any weak filling of a contact 3-manifold can
be symplectically embedded into a closed symplectic 4{oildniith b > 1.

Recall that a knot in a contagtmanifold is called Legendrian if it is everywhere tangent
to the contact planes. For anyll-homologoud.egendrian knot. in a contacB8-manifold,
the Thurston-Bennequin numbeér(L) is the contact framing of. measured with respect
to the Seifert framing.

An embedded disk in a contacB-manifold (Y, ¢) is called overtwisted if at each point
p € 0D we havel,D = ¢,. A contact3-manifold which contains such an overtwisted disk
is calledovertwistedotherwise it is calletight—which is the fundamental dichotomy
dimensional contact topology. Note thi#&D of an overtwisted disk is a Legendrian unknot
with tb(0D) = 0. If (Y,¢) admits a topologically unknotted Legendrian krfétwith
th(K) = 0, then(Y, ¢) is overtwisted. This can be taken as the definition of an awsttd
manifold.

For any null-homologous Legendrian knigtin an arbitrary contact-manifold, we can
find aC°-small isotopy that decreaséls(K') by any integer, but it is not always possible
to increaseb(K). If (Y, &) is overtwisted, however, any null-homologous kiodican be
made Legendrian withb( K') realizing any preassigned integer (se€ [45, p. 625]).
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Theorem 3.6(Eliashberg-Gromov [28])If a contact3-manifold is weakly symplectically
fillable, then it is tight.

Proof. Here we give a sketch of a proof (cf._[75, Thm. 12.1.10]) of dieen[3.6 which

is very different from the original proof. Suppose ti#t, w) is a symplectic filling of an
overtwisted contac-manifold (Y, £). Then, by the discussion above, there is an embedded
disk D C Y such thatoD is Legendrian and the framing @D induced by the contact
planes differs by-2 from the surface framing induced 8y, i.e.,tb(0D) = 2. By attaching

a Weinsteir2-handle alon@D to (W, w) we obtain a weak symplectic fillingV’, ') of

the surgered contagtmanifold(Y”, ¢’) (seel[36, Lemma 2.6]).

Now we claim that{ W, w’) contains an essential sphefewith self-intersectior{+1).

The spheres is obtained by gluingD with the core disk of the-handle, andS]? = 1
follows from the fact that the Weinsteizhandle is attached with framindy(0D) — 1.

By Theoren{3.6(WW’ ') can be (symplectically) embedded into a closed symplectic
4-manifold X with b5 (X) > 1, which contradicts to the combination of the following two
results: Witten[[98] showed that i is a smooth closed-manifold withb; (X) > 1 that
contains an embedded essential spisenénonnegative self-intersection, then the Seiberg-
Witten invariantSWy vanishes identically. On the other hand, Taubes [85] prokatif
(X,w) is a closed symplectit-manifold withbs (X) > 1, thenSWx (c;(X,w)) #0. O

The first examples proving that the converse of Thedrein 3&8se were discovered by
Etnyre and Honda [36]. Soon after, a variety of such examptse constructed by Lisca
and Stipsicz/[61, 62] using Heegaard Floer theory.

Theorem 3.7 (Etnyre-Hondal[[36]) Let Y} (resp. Y3) be the Seifert fibered space over
S? with Seifert invariant§—3, 1, 1) (resp. (—%,3,3)). ThenY; admits one tight con-
tact structure andr; admits two nonisotopic tight contact structures that are weakly
symplectically fillable.

Remark. The non-fillability part of Theorem 3.7 essentially follofvem Lisca’s result we
stated in Remark 3.4, but showing tightness of the contagttstres is much harder. We
would like to point out thal; andY; are both torus bundles over the circle.

On the other hand, as we will discuss in details in Sedtioméret are infinitely many
contact3-manifolds each of which admits infinitely many distinctigt#lings. The reason
that we restrict ourselves to the classificationnohimal symplectic fillings is that any
blow-up of a symplectic filling is another symplectic filling blow-up of a Stein filling,
on the other hand, cannot carry any Stein structure sincestbeptional sphere in the
blow-up violates the adjunction inequality (see Secftial).2.

In an other direction, the culmination of the work in [2,! 48] 6eads to one useful
characterization of Stein fillable contazmanifolds:
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Theorem 3.8. A contact3-manifold (Y, &) is Stein fillable if and only if is supported by
some open book ilm whose monodromy admits a factorization into a product oftp@s
Dehn twists.

There are, however, Stein fillable contaanhanifolds each of which carries an open book
supporting the given contact structure whose monodromyitadm positive factorization
at all (cf. [8,[90]). In particular, this shows that the chaesization above does not hold
for everyopen book supporting the given contact structure.

Nevertheless, Stein/symplectic fillings of contaahanifolds supported bglanar open
books are understood much better due to the recent work oflM\W&a describe his work,
we give a few basic necessary definitions here and refer {pf(@2he details. In our
discussion leading to Theorédm 2.8 in Secfion 2.3, we gaver ploof of the fact that an
allowable Lefschetz fibration ové&r? admits a Stein structure, but we did not pay attention
to how the Stein structure, or more precisely the exact sgatigl form, restricts to the
fibers of the Lefschetz fibration. However, there is a longonsof the study of symplectic
Lefschetz fibrations in the literature.

Suppose thall is a closed, connected and oriented surface,fand — X is a smooth
fibre bundle whose fibers are also closed, connected andexntienrfaces. Thurston [86]
showed thafX admits a symplectic forny such that all fibers are symplectic submanifolds
of (X, w), provided that the homology class of the fibre is non-zerd4iX, R). Moreover,
the space of symplectic forms ok having this property is connected. This result of
Thurston was generalized to Lefschetz fibrations by Gompf.

Theorem 3.9 (Gompf [46]). Suppose thaf : X* — X2 is a Lefschetz fibration such
that homology class of the fiber is non-zeradHr( X, R), where bothX andX are closed,
connected and oriented manifolds. Then the space of sytigpfeoms on X that are
supported byf is nonempty and connected.

We say that a symplectic form on X is supportedby f : X — X if every fiber is a
symplectic submanifold at its smooth points, and in a neaghbod of each critical point,
w tames some almost complex structurthat preserves the tangent spaces of the fibers.

In [92], WendlI defines &ordered Lefschetz fibratioh: £ — D? with a supported sym-
plectic formwg such that, in addition to the conditions abowe, = d\ in a neighborhood
of OF for some Giroux form\. A symplectic filling (W, w) of a contact 3-manifoldY’, £)
is said to admit a symplectic Lefschetz fibration oRéiif there exists a bordered Lefschetz
fibration f : £ — D? with a supported symplectic formz such that, after smoothing the
corners oE, (E,wg) is symplectomorphic tolV, w).

Theorem 3.10(WendI [91]) (see alsd92, Thm. 5.6} Suppose thatlV,w) is a strong
symplectic filling of a contact-manifold(Y’, ) which is supported by a planar open book
f: Y\ B — S'. Then(W,w) admits a symplectic Lefschetz fibration oi# such that the
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induced open book at the boundary is isotopi¢toY \ B — S'. Moreover, the Lefschetz
fibration is allowable if and only ifW, w) is minimal.

In this case, the Lefschetz fibration determines a supgpotyen book orfY, &) uniquely
up to isotopy. Moreover, the isotopy class of the Lefschétmation produced oV, w)
depends only on the deformation class of the symplecticttre. The punch line is that
the problem of classifying symplectic fillings up to symgleaceformation reduces to the
problem of classifying Lefschetz fibrations that fill a givelanar open book supporting
the contact structure.

Definition 3.11. A contact3-manifold(Y, £) is said to be planar it” admits a planar open
book supporting.

The following generalization of Theorem 3110 was proved/id{

Theorem 3.12(Niederkruger-WendI [70])If (Y, ¢) is a planar contacB-manifold, then
every weak symplectic fillingV, w) of (Y, &) is symplectically deformation equivalent to a
blow up of a Stein filling ofY, &).

4. CONTACT 3-MANIFOLDS ADMITTING ONLY FINITELY MANY FILLINGS

In this section we would like to list some examples of orientésed3-manifolds for
which theBasic Problenstated in Sectionl3 has been completely solved.

4.1. The standard contact structure onS?. Letw,, := dx; A dy; + dxs A dy, denote the
standard symplectiz-form onR* in the coordinateéz;, yi, z2, y2). Let

1
Agt 1= §x1dy1 — 1dxy + odys — yYodzs

be the standard primitive of,,. The standard contact structure §h c R* is defined as
£ = ker ay, Wherea,, = A\, |gs. The vector field

! Oy h Oy 23$2 Y2 0ys
is a Liouville vector field forw,, which is transverse t6° (pointing outward), which shows
that(D*, w,) is a strong symplectic filling of the standard tight contasphere(S3, £;).
In other words(S?, £,,) is the convex boundary ¢D*, w,;).

Consider the standard complex structugeon R* given by
0 0 0 0
—_ dJS _— ) = —— f :1’2
axj) 9y, " t(ayj) o,

Note that.J,, is just the complex multiplication by whenR* is identified withC?. Let
¢ : R* — R be defined by

O(x1, Y1, T2, y2) = 7 + i + 5 + 3.

Js(
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Theng is an exhausting/,,-convex function oriR* so thatS?® is regular a level set. It is

easy to check that,, = —=(d¢ o Jy)|gs. This shows thaD* equipped with the restriction

1
2 - - - - -

of standard complex structurk, on R* is a Stein filling of(S3, &,;). There is yet another

description of,; as thecomplex tangenciese.,

E=TS*N Ju(TS?).

We should also point out, in surgery theof§?, £,;) is commonly defined as the extension
of the standard contact structure ®Bhwhich is given as the kernel of

dz +zdy — ydr = dz + r’df

in the coordinategz, y, z) or using polar coordinateg-, §) for the xy-plane. In other
words, for anyp € S3, (S3\ {p}, &stlga\ ) is contactomorphic to the standard contact
R3. Note that the standard contact structureRdrcan also be defined &sr(dz + x dy) or
ker(dz — y dx), up to isomorphism.

The following result is due to Gromov [48] (see als0![24, Tieswo 5.1], [65, Theorem
1.7], [19, Theorem 16.6]).

Theorem 4.1. Any weak symplectic filling ¢f53, £,;) is symplectically deformation equiv-
alent to a blow-up of D*, w,;).

This result can be obtained [92, Corollary 5.7] as an easylleny to Theoreni_3.10
since(S3, &,;) admits a planar open book whose page is an annulus and whosgirnmy
is a single positive Dehn twist along the core circle. Thisnoadromy admits a unique
positive factorization which proves Theorém|4.1.

4.2. The standard contact structure onS* x S2. We define the standard contact structure
£, 0nStx S? as the contact structure supported by the standard opergbaokas follows:
The page is the annulus and the monodromy is the identitye Mwit(S* x 52, &) is
Stein fillable by Theorern 3.8 and it is well-known (cf._[40,c8en 4.10]) thatS* x S?
admits a unique tight contact structure, up to isotopy. Amgjrsfilling of (S x 5% &) is
deformation equivalent to the canonical Stein structuré’or D3 =~ D* U 1-handle given
by Theoreni.24. The following theorem was implicitin [23¢¢salsol[41]).

Theorem 4.2. Any weak symplectic filling ¢f5* x S?, &,;) is diffeomorphic taS* x D3.

Since (S x 5% &) is planar, Wendl's Theorem 3110 can be applied here to yhedd t
next result as an immediate consequence:

Theorem 4.3.[92] The strong symplectic filling ¢5! x 52, £,;) is unique up to symplectic
deformation equivalence and blow-up.
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In fact, using Theorern_3.12, “strong” can be replaced by ‘kéa Theorem 4.8. Note
that Theorem 311 does not apply here.

Remark. [19, Theorem 16.9] The standard contégt, S' x S? &) is defined as the
contact connected sum of copies of(S! x 5%, £,;). Any Stein filling of (#,,5! x 52, &)
is deformation equivalent to the canonical Stein struatartg, S* x D? = D*UE 1-handles.

4.3. The 3-torus T3. Using coordinatesz;, 2, y1, y2) for the cotangent bundl&*7?2 =~
T? x R?, the tautological -form on the unit cotangent bundi& 7 can be given as, =
x1dy; + z2dys. If we identify the3-torusT? asT? x S* = T? x 9D? = S*T?, and replace
the (y1, y2) coordinates ofR? with (cos(270), sin(276)) on the circledD? C R?, we see
that

&o = ker(cos(2m0)dx; + sin(270)dxs)

is a contact structure of* = T2 x S! in the coordinategr,, x-, 0).
Moreover,(T? x D? wy) is a strong symplectic filling of 73, &), where

Wy = dl’l A dyl + dl’z VAN dyg

denotes the canonical symplectic form @172, In fact, 7?2 x D? is a Stein filling of
(T3, &), since for some appropriatg we haveu, = —dd®¢ for the exhausting/-convex
functiong(z1, za, Y2, y2) = 5(yi + v3) (cf. [91]).

It was shown by Eliashberg [26] th&s is the unique strongly fillable contact structure
onT?3. Note that a Stein structure on the trivial disk burififex D? which fills the contact
3-manifold (73, &,) can also be described by the Legendrian surgery diagran®irppbe
430].

In [82], using gauge theory Stipsicz showed that any Stdindibf (72, ;) is homeo-
morphicto 72 x D?. This result was improved by Wend[[91], who proved that aryimal
strong symplectic filling of 72, &) is symplectic deformation equivalent to a star-shaped
domain in(T*T?, wy). In particular,

Theorem 4.4(Wendl [91]). Every minimal strong filling o is diffeomorphic ta™ x D?.

We do not need to specify any contact structure in Thebrehsihdel™ carries a unique
strongly symplectically fillable contact structure, altigh it carries infinitely many weakly
symplectically fillable contact structurés = ker «,,, for n € N, where

o, = cos(2m(n + 1)8)dxy + sin(2w(n + 1)8)dxs.

These contact structures are distinguished by their Gitorston [43].

The contact-manifold (73, &,) is not planar since according to [33, Thm. 4.1], any
symplectic filling (W, w) of a planar contacs-manifold has the property thag (W) =
WY(W) = 0, butby(T? x D?) # 0. Thus Theorems 3.10 ahd 3112 are not applicable.
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FIGURE 3. Torus with3-holes

As it was shown in[[89], the contact structuf®, &) is supported by an open book
whose page is a torus withholes and whose monodromy is given (see Figlire 3) as

= D3(a;)D™3(ag) D3 (a3) D(61) D(2) D(d3) € Ty 3

Remark. This open book o™ can also be obtained as follows: First observe fiais
diffeomorphic to the plumbing of circle bundles over the eghaccording to theircular
graph with associated Euler numbéis 2,2, 1,2,2, 1,2, 2} and then apply the algorithm
in [31].

Note thaty) can be expressed as a product of three positive Dehn twisti@ss: The
relation

D(81)D(85) D(63) = (D(c) D(c) D(a)D(53))° € T
is well-known [54]. By settingp = D(ay)D(az)D(a3) we have

v =¢"(eD(B))” = ¢72D(B)p*¢™' D(B)eD(B) = D(¢™%(8)) (™ (8))D(3)

Hence we conclude that there is an allowable Lefschetz fitordt* x D? — D? with three
singular fibers whose monodromy factorization is giveds2(3)) D (¢ 1(3))D(3).

4.4. Lens spaces.The standard tight contact structufg on S2, is invariant under the
action of the group

Gra=1( 1§ o )1 =1cUE
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wherep, ¢ € 7Z. It follows that whenp > ¢ > 1 andp, g are coprime{,; descends to a
contact structuré,, on the lens spacg(p, q) = S*/G, .. Note that , is universally tight
by definition, since its universal cover(i§?, ;).
McDuff [65] showed that ifp # 4, any minimal weak symplectic filling ofL(p, 1), €,,)
is diffeomorphic to the disk bundle ovéf with Euler number-p, while (L(4,1),&,,) has
two distinct symplectic (in fact, Stein) fillings. In Seati®.1, we present these fillings as
allowable Lefschetz fibrations ov@®? and discuss their relevance to rational blowdowns.
Lisca [58] extended McDuff’s results to all lens spacesmgva complete diffeomor-
phism classification of minimal weak symplectic fillings(@f(p, ), €,,). In particular, he
showed that

e each diffeomorphism class has a Stein representative and

e forall p > 2, the contact lens spa¢é(p?, p—1), £,,) has two distinct Stein fillings.
(See Section 612 for further details.)

The strategy of proof in the above classification results tduklcDuff and Lisca can
be outlined as follows: Suppogé/, wy, ) is minimal strong symplectic filling of a given
contac3-manifold (Y, ¢). By finding a convenient symplectic capsencavdilling (Z, wz)
of (Y, {)—one can embedV, wy, ) into a closed symplecti¢-manifold X = W Uy Z,
where the symplectic form O is obtained by an appropriate gluing [32]. Suppose that
the capZ contains a spherg of self-intersectiont1, and henceX contains such a sphere.
Then McDuff’s Theoreri 4]5 implies thaf is a rational symplectic 4-manifold.

Theorem 4.5(McDuff [65]). Let(X,w) be a minimal closed symplectiemanifold where

S is an embedded sphere of self-intersecttonS = 1. Then there exists a symplectomor-
phism from X, w) to (CP?, wyy,) that takesS to a complex line ifC P?, wherew,;; denotes
the usual Kahler form onC P2.

In particular, after blowing down a finite collection of sytaptic (—1)-curves away from
S, X becomes the complex projective plane witla complex projective line in it. What is
outlined so far gives restrictions on the symplectic togglof the possible fillind W, wy ).
The intricate part of this method is to figure out differensgible configurations of—1)-
curves which can be blowdown to obtain a copyG##* such thatS = CP' c CP? We
refer the reader td [15] for a more detailed exposition o thethod.

We now turn our attention to the virtually overtwisted cantstructures ori(p, 1). Ac-
cording to Honda'’s classification [49], there arel tight contact structures, &, . .., &1
on L(p, 1), distinct up to isotopy, wherg, is the result of Legendrian surgery on the stabi-
lized unknot in(S3, £,;) with k cusps on the left angd— & cusps on the right. The union of
D* and the2-handle corresponding to the surgery yields a Stein fillihg/dp, 1), &). Out
of thep — 1 tight contact structures oh(p, 1) listed above, only¥; and¢, are universally
tight (both isomorphic t@,,), and the rest are virtually overtwisted.
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Theorem 4.6(Plamenevskaya & Van Horn-Morris [[78]Every virtually overtwisted con-
tact structure on.(p, 1) has a unique Stein filling (up to symplectic deformation)icivins
also its unique weak symplectic filling (up to symplectiodeftion and blow-up).

The strategy that Plamenevskaya and Van Horn-Morris usguiadee Theoreni 416 is
very different from the one that we outlined above for clyssg fillings of the standard
structuret,. It is easy to see that every tight contact structuré(ip, 1) is planar[79]. In
fact, the monodromy of some particular planar open book atiiie with £, can be de-
scribed by classical techniques (¢f.[35]). By Wendl's Tieen[3.10, every Stein filling of
(L(p, 1), &) is symplectic deformation equivalent to an allowable (sigufic) Lefschetz
fibration overD? whose boundary is the given planar open book. Thereforeyffices
to study positive factorizations of the aforementioned otomy, to classify fillings of
(L(p,1),&). In [78], Plamenevskaya and Van Horn-Morris were able to festrictions
on possible positive factorizations for certain simple wdnomies, by means of elemen-
tary calculations in the abelianization of the mapping €lgsoup of the planar surface.
Such restrictions coupled with some deep results abouttheacterization of Legendrian
unknots in(S?, &) yielded a proof of Theoref 4.6.

Corollary 4.7. [78] For p # 4, every tight contact structure ab(p, 1) has a unique Stein
filling (up to symplectic deformation), which is also its que weak symplectic filling (up
to symplectic deformation and blow-up).

Recently, Kaloti was able extend the results of Plamengaskad Van Horn-Morris to
other lens spaces, based on some new analysis on the ptaitmazations in the mapping
class of groups of planar surfaces, in addition to the tephes discussed above.

Theorem 4.8(Kaloti [51]]). Let¢ be a contact structure on the lens spdoe(m + 1) +
L, (m+1)).1fis
e virtually overtwisted, theg has a unique Stein filling up to symplectomorphism.
e universally tight and # 4,5, ..., (m + 4), then{ has a unique Stein filling up to
symplectomorphism.
e universally tightang = 4,5, ..., (m + 4), then has at least two Stein fillings up
to symplectomorphism.

4.5. Circle bundles overT™?. For any positive integek, let Y;, denote the oriented circle
bundle overl™” with Euler number—k. There are exactly two Stein fillable universally
tight contact structures oYy, up to isotopy, which are isomorphic to each other [50]. Let
&, denote this contact structure up to isomorphism. Ohta ar@[@#] classified minimal
strong symplectic fillings ofY%, &) up to symplectic deformation:

e if £k > 10, then there is a unique minimal strong symplectic fillingegivby the
symplectic disk bundle over torus with Euler numbek,
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e if £ < 9andk # 8§, then there are two minimal strong symplectic fillings one of
which is given by the symplectic disk bundle over torus withdf number£, and

e if £ = 8, then there are three minimal strong symplectic fillings ohenhich is
given by the symplectic disk bundle over torus with Euler ivem-S.

Here we would like to present all the fillings listed above Bevwaable Lefschetz fibra-
tions overD?. The contac8-manifold (Y, &) is supported by the open book whose page
is a torus withk holes and whose monodrongy. can be expressed as the product

D(61)D(62) - - - D(0%),

whered; denotes a curve parallel to thgh boundary component[13]. The following can
be easily verified by drawing a smooth handlebody diagrarhetorresponding Lefschetz
fibrations.

Lemma 4.9. For k > 2, let f,, : D, — D? denote the allowable Lefschetz fibration whose
monodromy has the following factorization

U, = D(61)D(0g) - - - D(0g) € T'y .
ThenDy is diffeomorphic to the oriented disk bundle over torus ither number£.

Note that the “factorizationy); = D(9,) does not yield an allowable Lefschetz fibration
since the boundary parallel curve is homologically trivial on the fiber (torus with one
hole). Nevertheless, the total space of this Lefschetztitorawith one singular fiber is
diffeomorphic to the disk-bundle over torus with Euler nianb 1, which is a Stein filling
of (Y1,&;). To find a possibly higher genus allowable Lefschetz fibratwerD? on this
disk-bundle, one could apply the algorithm iin [2] to the Bteandlebody diagram of this
bundle depicted in [13, Figure 1].

As described in[[54], fol < k < 9, ¢y € I'y; has a factorization intd2 posi-
tive Dehn twists along homologically nontrivial simple sém curves on a torus witt:
holes. The total spac#, of the corresponding allowable Lefschetz fibration dvéis not
even homotopy equivalent 10, since they have different Euler characteristics. HeAge
equipped with its Stein structure given by Theofem 2.8 iscasé Stein filling of(Y}, &)
forl1 <k <09.

Now we turn to the cask = 8: First of all, note that the monodromy of the allowable
Lefschetz fibration oved? on Ay is given [54, page 84] by the positive factorization

s = D(ou)D(as)D(B1) D(03) D(a6) D(ag) D(Fs) D(0a) D(o7) D(a7) D(64) D(0s) € I'ig

wheres; = (D(«;))(0) fori = 1,4, 6, (see Figurél4).
By Lemmd 2.5 H,(As; Z) is generated by[a4], [5], [d1], - - ., [07]} modulo the subgroup

([aa], [, [as], [ar], [B1], [Bal, [B6], lo3], (o], [o5], [06], [o7])-
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FIGURE 4. Eight-holed torus with bounda#y, . .., ds}

Using the Picard-Lefschetz formula (cf._[46, page 298]} = [5] + [«;], for j = 1,4, 6,
and the fact thay; ;1] = [a;1] — [aw], for 1 < ¢ < 7, we easily see that thaf, (As; Z) is
trivial.

There is another positive factorizationf [84, Proposition 2.6] given as:
Vs = D(a5)D(a7)D(85)D(82) D(02) D(01) D(an) D(as) D(85) D(8s) D(04) D(07) € Ty s

wheres; = (D '(«a;))(B), fori = 2, 6 (see Figuréls). LeBg denote the total space of the
allowable Lefschetz fibration ové? with monodromy factorization as above.

Then H,(Bs; Z) is generated by{[a], [3], [d1], - - -, [07]} modulo the relations induced
by the vanishing cycles:
[an] = [as] = [as] = [ar] = [Ba] = [B3) = [Be] = [B5] = 0;
[01] = [0a] 4[] = 0; [02] = [05] +[aa] = 0; [04] = [61]+[a] = 0; [o7] = [0s]+ 6] = 0.

By the Picard-Lefschetz formula, we have

[B2] = 18] + [ea]; [B5] = [B] — [e2); [B6] = [B] + [ews]; [B6] = [B] — [exe]-
It follows that H (Bs; Z) is isomorphic tdZ,. We conclude thatls is not homeomorphic
to By, albeity(As) = x(Bs).

Remark. A fruitful source of Stein fillable contaci-manifolds is given by the links of
isolated complex surface singularities. The reader issamdivto turn to the excellent lec-
ture notes([67] for an introduction to singularity theorydao the survey article [68] to
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FIGURE 5. Eight-holed torus with boundafy;, . .., ds}

learn in depth, the connection between the analytical aspscsingularity theory and
low-dimensional topology. In particular, we will use thetioas of simple simple ellip-
tic, cyclic quotientand quotientsingularities,resolutions smoothingsand Milnor fibers
without defining them in this article and refer to the souralesve.

Let (X,0) C (CV,0) be an isolated complex surface singularity. Then a suffilsien
small spheres?¥~1 C CV centered at the origin intersects transversely, cutting out a
closed, oriented and smootkdimensional manifold/ = X N S2¥~! which is called as
the link of the singularity. The oriented plane distributi§.,,, := TM N JT M, where
J is the complex structure oN, is called thecanonicalcontact structure o/, which is
uniquely determined up to isomorphism [18]. It turns out][8%at the canonical contact
structure is universally tight, i.e., its universal covgtight.

Note that a regular neighborhood of the exceptional divisarminimal resolution of the
surface singularity provides a holomorphic filling&f,,. This filling cannot be Stein since
it contains compact complex curves as its complex analybermnifolds (see Section 1.1).
Nevertheless,..,, is Stein fillable (hence tight) since the aforementionedarphic fill-
ing can be deformed to be a blow-up of a Stein filling withowdreging the contact structure
on the boundary [16]. Moreover, if the singularity admitsv@o®thing, each Milnor fiber
of any of its smoothings also provides a Stein fillinggf,.

For anyk € Z7*, let (X, 0) denote the simple elliptic singularity of degreewhose
minimal resolution consists of a single elliptic curve offsetersection number-%. The
link of the singularity( X}, 0) is orientation preserving diffeomorphic to the circle blend
Y}, and the canonical contact structureXgnis given by, up to isomorphism. Therefore,
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As, Bg and Dy represent the three distinct Stein fillings(df, £s) in Ohta and Ono'’s clas-
sification, whereDg is the minimal resolution of the singularity whilés, Bg correspond
to the Milnor fibers of two distinct smoothings.

4.6. Some hyperbolic3-manifolds.

Theorem 4.10(Kaloti-Li [52]). There are infinitely many contact hyperbobananifolds
each of which admits a unique Stein filling, up to symplectiodnation.

For the proof, they perform surgery on a sufficiently staleii Legendrian twist knot in
(S3,&,:); express the monodromy factorization of some planar opek bapporting the
resulting hyperbolic contagtmanifold; apply Wendl’'s Theorem 3.1L0 and find restrictions
on possible positive factorizations of the monodromy byigate analysis in the mapping
class group of the planar surface at hand.

4.7. Some graph manifolds. By a graph manifold, we mean an orienteahanifold ob-
tained by plumbing oriented circle bundles over closednteé surfaces according to a
graph. Leti’ denote the symplecticmanifold with convex boundary obtained by plumb-
ing oriented disk bundles over the sphere according to tlgative Ex diagram. The
boundaryoWV is diffeomorphic to the Poincaré homologysphereP, and henceP car-
ries a strongly symplectically fillable contact structgge This contact structure can also
be described by the Legendrian surgery 6 £,;) along the link depicted in Figufe 6. Ac-
cording to Theorern 214, a Stein filling 6P, ¢p) is obtained by attachingrhandles to the
standard Stein-handleD* along the Legendrian link whose front projection is depicte
in Figure[6. Ohta and Ono [73] proved thatadmits a unique weak symplectic filling up
to symplectic deformation and blow-up. As a matter of fagtjs the unique tight contact
structure onP, up to isotopy.

FIGURE 6. Legendrian link in(S?, &)

The contacB-manifold (P, {p) is not planar([38, Thm. 4.1], since the intersection form
of the strong symplectic filling above is non-diagonalizabThe contact structurg- is
supported by the open book whose page is torus with one haolevanse monodromy
is given by(D(a)D(3))® € T'y,1, wherea and 3 are the standard representatives of the
first homology group of the page. LBt — D? denote the allowable Lefschetz fibration
whose monodromy factorization is givend(«) D(3))°. According to Theorermn 2.8} »
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can be endowed with a Stein structure, so that it becomesrafiiiag of (P, ¢p).

Remark. The Poincaré homology-sphereP is orientation preserving diffeomorphic to
the link of a simple singularity, angk is the canonical contact structure on this link. More-
over,Wp is diffeomorphic to the Milnor fiber which, in turn, is diffeeorphic to the mini-
mal resolution given by the negativg-plumbingV. In fact, Ohta and Ono [73] showed
that the link of a simple (or ADE) singularity, equipped with canonical contact struc-
ture admits a unique weak symplectic filling up to sympledgtormation and blow-up.
In addition, Bhupal and Ona [12] classified the strong symiuidillings of the link of a
quotient surface singularity.

4.8. Some Seifert fibered spacesin [81], Starkston gave finiteness results and some clas-
sifications up to diffeomorphism of minimal strong sympiedillings of Seifert fibered
spaces ovef? satisfying certain conditions, with a fixed natural conttoticture.

5. CONTACT 3-MANIFOLDS ADMITTING INFINITELY MANY FILLINGS

In this section, we collect some examples of consagtanifolds in the literature each of
which has been shown to admit infinitely mashgtinct Stein fillings. We will clarify what
we mean by distinct for each of the examples we consider below

Definition 5.1. Let Y, ,, denote the oriented-manifold which is the boundary of thie
manifold obtained by plumbing of the disk bundle over a gegnaisrface with Euler num-
ber 0 and the disk bundle over a sphere with Euler number. The 3-manifold Y, ,,
admits an open book whose page is a gepgarface with connected boundary and whose
monodromy isD*"(~y), where~ is a boundary parallel curve. Lej, ,,, denote the contact
structure supported by this open book.

5.1. Infinitely many pairwise non-homeomorphic Stein fillings. The first example of a
contact three manifold which admits infinitely many distiStein fillings was discovered
by the author and Stipsicz:

Theorem 5.2.[74] For each odd integey > 3, the contacB-manifold (Y 1, &, 1) admits
infinitely many pairwise non-homeomorphic Stein fillings.

In the following, we outline the construction of these fiJs) which is based on the
following result:

Proposition 5.3.[4] Let f : X — S? be an allowable Lefschetz fibration that admits a
section. LetJ denote the interior of a regular neighborhood of the uniorilo$ section
and a regular fiber off, and letW = X \ U. Thenf|y : W — D? is an allowable
Lefschetz fibration and hend& carries a Stein structure such that the induced contact
structure oW is supported by the induced open book.
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Forg = 2h + 1 > 3, consider the allowable Lefschetz fibratign: X, — S* whose
fiber is a closed oriented surface of gemusnd whose monodromy factorization is given
by the word [53]

(D(Bo)D(Br) - - D(B,)D*(a) D*(8))* =1 €T,
where these curves are depicted in Figure 7.

FIGURE 7. Vanishing cycles of the genyd_efschetz fibratiory, : X, — S%.

Remark. The Lefschetz fibratiorf, : X, — S* admits a sphere section of self-intersection
—1, which is equivalent to the fact that

(D(B0)D(B1) -+~ D(B,)D*(@) D*(8))” = D(6) € Ty
whered is a boundary parallel curve on a genusurface with one boundary component.

Note that the total spac¥, is diffeomorphic toX;, x S?#8CP?, whereX, denotes a
closed oriented surface of gentis= %(g — 1). In particular, the first homology group
H,(X,; Z) contains no torsion.

Let f,(n) : X,(n) — S? denote thewistedfiber sum of two copies of the Lefschetz
fibration f, : X, — S?, where the gluing diffeomorphism, i.e., a self-diffeomiigm of a
generic fiber, is an-fold power of a right-handed Dehn twist along a certain htogically
nontrivial curve on the fiber. We observe that

o H(X,(n);Z)=272%*® Z,, and
e f,(n): X,(n) — S? admits a sphere section with self-intersection number

The crux of the matter is that althoudl (X,; Z) has no torsionH,(X,(n); Z) has

torsionZ,, depending on the power of the Dehn twist we use for the fiber. dietlU, (n)
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denote the interior of a regular neighborhood of the unichet{—2)-sphere section above
and a regular fiber of,(n). Itis easy to see that, for each positive integgethe boundary
oU,(n) is diffeomorphic taY, ; with theoppositeorientation. LetV,(n) := X (n)\U,(n).
By Propositio 5.8, for fixed odd > 3, the set

{Wy(n) [ n ez}

gives an infinite family of pairwise non-homeomorphic Stélhngs of the contact3-
manifold (Y;1,&,,1), since one can see that

Hy\(Wy(n); Z) = H\(Xy(n); Z) = 297 @ Ly

Remark. From the mapping class group point of view, the infinite sepaifwise non-
homeomorphic fillings above owes its existence to the iripitnany distinct factoriza-
tions of D*(6) € I',; as

(D(By) - - D(B,) D*(@) D*(8))" (D(™ (Bo)) - - - D(™(B,)) D* (" () ) D* (™ (8)))

whered denotes a boundary parallel curve asiddenotesD™ () for some homologically
nontrivial curvey on the genug surface with one boundary component.

2

5.2. Infinitely many exotic Stein fillings. The first example of a contagtmanifold which
admits infinitely manyexotic(i.e., homeomorphic but pairwise non-diffeomorphic) skyap
connected Stein fillings was constructed.in [6].

Theorem 5.4.[6] For each integely > 4 andm > 1, the contacB-manifold (Y., &,.m)
admits infinitely many exotic Stein fillings.

The essential ingredient in the proof of Theolfem 5.4 is tmeusShel-Stern knot surgery
[38] along a homologically essential torus using an infifatily of fibered knots in5® of
fixed genus with distinct Alexander polynomials. The ingniamily of Stein fillings are
obtained—as in the previous section—by removing the iotesf a regular neighborhood
of the union of a section and a regular fiber of a certain allderdefschetz fibration over
S? after applying knot surgery along a torisso that

e T is disjoint from the section, and
e T intersects each fiber of the Lefschetz fibration twice.

The Stein fillings are pairwise non-diffeomorphic sincedsefthe removal of the union
of the section and the regular fiber, the closethanifolds are already pairwise non-
diffeomorphic. This is because they have different SedWitjen invariants based on the
choice of the infinite family of fibered knots with distinctédander polynomials. The fact
that these fillings are all homeomorphic is essentially goted by Freedman’s Theorem.

Recently, Akhmedov and the author were able to generaliee®ni 5.4 as follows:
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Theorem 5.5.[7] For any finitely presentable grou@, there exists a contagmanifold
which admits infinitely many exotic Stein fillings such tiet tundamental group of each
filling is isomorphic toG.

Remark. The contacB-manifolds in Theorern 515 are the links of some isolated derp
surface singularities, equipped with their canonical aonstructures.

Moreover, Akbulut and Yasui [5] showed that there existsrdmite family of contact
3-manifolds each of which admits infinitely many simply cootesl exotic Stein fillings
with b, = 2. Their approach to construct exotic Stein fillings is dicdty different from
what we outlined above for all the other previous constamnstibased on Proposition b.3.
The infinite family of exotic Stein fillings are obtained bydog transform > 1) along
a single torus with trivial normal bundle in a certaitmanifold with boundary. The Stein
structures are described by Legendrian handle diagramspgassed to using Lefschetz
fibrations—and the smooth structures on the fillings arardjsished by a clever use of
the adjunction inequality (see Section]2.4).

5.3. Stein fillings with arbitrarily large Euler characteristic s. Let (Y, ¢) be a closed
contact3-manifold and let

C(Y, &) ={x(W),ac(W) | (W,J) is a Stein filling of (Y, &) }

wherey denotes the Euler characteristic andlenotes the signature. It was conjectured
[74] that for every contacs-manifold (Y, &), the setC(Y,¢) is finite. The finiteness of
C(Y, &) for a planar contact3-manifold (Y, £) follows from [83, Corollary 1.5] since any
Stein filling of a planar contaci-manifold must be negative definite |[33]. Therefore the
conjecture holds true for planar contdemanifolds—as observed by Plamenevskaya [77],
and Kaloti [51].

The conjecture above was disproved recently by Baykur amdH&@n-Morris [9,[10]
who showed that there are vast families of contaahanifolds each member of which
admits infinitely many Stein fillings with arbitrarily larg€uler characteristics and also
unbounded signatures. The main ingredient in their protifesfollowing result which is
of interest on its own:

Theorem 5.6 (Baykur & Van Horn-Morris [10]) For any integerg > 8, the boundary
multi-twistD(6,)D(d2) € I, » admits arbitrarily long factorizations of positive Dehnisis
along non-separating curves.

In [20], this result was improved to cover agy> 3. By capping off one boundary
component, it immediately follows that the boundary twii) € Iy ; admits arbitrarily
long positive factorizations for any > 3. This is not true fory = 1,2. In fact, forg = 1,
the boundary multi-twisD(6,)D(d;) - - - D(d,,) € I'1, can be expressed as a product of
positive Dehn twists about nonseparating simple closedesuif and only ifn < 9 (cf.
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[54]). Moreover, in the case < 9, the number of Dehn twists in any such positive fac-
torization must be 2 for homological reasons. The fact tha{d) € I'y; does not admit
arbitrarily long positive factorizations was proved by 8mjB0, Theorem 1.4]. In contrast,
D?*(§) € I'y; admits arbitrarily long positive factorizatioris [20].

In the following we describe an element (different from a ibdary multi-twist) inI’; ;
which has arbitrarily long factorizations of positive Ddinsts (cf. [20]). The existence of
such an element indeed provides a counterexample to thenaémtioned conjecture. We
refer to Figuré B for the curves that appear in the followiexg tlt is well-known that

FIGURE 8. A genus two surface with connected boundary

D(B)D(v) = (D(e1)D(az) D(as))*
and by applying braid relations we obtain

D(B)D(7) = (D(o1)D(02)D(a5))*

= (D(al)D(ag)D(ag))2D(oz1)D(oz2)D(ag)D(al)D(ag)D(ag)
= (D(a1)D(as)D())* D(an) D(as) D(ay) D(ig) D(cz) D(as)
— (D(a1) D(az)D(as))* D(az) D(ay) D(ag) D(rs) D) D(cs)
= (D(al)D(ag)D(ag))2D(ozg)D(ozl)D(ag)D(ag)D(ag)D(ag).

By taking them-th power for anym, we have
" = D"™(B)D™™(a3) D™ (v) D™ ™ (a3).

We follow [20] to construct the desired element with arbitydong positive factorizations,
although similar arguments appeared.in [11] and alsb [1Mrha 3.4]. Let

v = D(ay)D(a3)D(as)D(a1)D(aq)D(ag) D(as) D(cy) D(ag) D(5) D (a3) D(vy)
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It can be shown by a direct calculation thetv;) = v andy(3) = 3. Therefore
" = D"™(B)D™(az) D" (v) D" (w3)
= D™(B) D™ (a3) D™ (p(as)) D™ (p(5))
= D™ (B)D™"(a3) D" D™ (az)p ™ oD (B)p
= D™(8)D™"(a3) D" D™ (c3) D ()"
= [D™(B)D™"(as), ¢
where brackets in the last line denote the commutator. Hence
=D "(B)D"(az)T" D" (v) D™ (v3)
= oD ™ (B) D" (az)p™ T D" () D™ ()
= D" (az) D" (7)™ D™ () D™ (a3).
Thusyp is a conjugation opT™ by D~ («a3) D™ (). But since bothp and7” admit positive
factorizations, the product7™ admits a positive factorization. Therefore we conclude

that admits a factorization intd2 + 10m positive Dehn twists for arbitrary non-negative
integerm.

6. MONODROMY SUBSTITUTIONS AND RATIONAL BLOWDOWNS

In this section we would like to shed some light on the classiifon of Stein fillings of
universally tight contact lens spaces, illustrating homeaelations in the mapping class
groups come into play.

6.1. The lantern relation. Let 3, (., 33,70, 71, 72, 73 be the curves depicted in Figure 9
on a spher&, with 4-holes. The identity

D(750)D(71)D(72) D(7y3) = D(B1)D(B2)D(53) € Toa

is known as the lantern relation. Suppose tBaand C' are compacti-manifolds (with
boundary) admitting allowable Lefschetz fibrations ol@rwith regular fiberS, whose
monodromies ar®(5,) D(82) D(Fs) andD(vo) D (1) D(v2) D(v3), respectively.

A handlebody diagram of thé-manifold C' induced from its Lefschetz fibration de-
scription is depicted on the left in Figurel10. By sliding th@ttom2-handle over the top
2-handles, and cancelling eatthandle against the-handle that it is linked once, we see
thatC' is diffeomorphic to the disk-bundle over the sphere withdEuumber—4, whose
boundary is the lens spacg4, 1).

By Theoreni 2.8 admits a Stein structure such that contact strucien the bound-
ary is supported by the the open book with pagend monodromy

D(70)D(71) D (72) D(73).
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S B

FIGURE 10. The handlebody diagram 6f

According to [49],L(4, 1) has three distinct tight contact structures up to isotofpypfa
which are Stein fillable (cf. Figufe11).

I

FIGURE 11. Legendrian surgery diagrams of three distinct tighttacin
structures or.(4, 1)
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Lemma 6.1. The contac8-manifold(9C, {s¢) is isomorphic ta(L(4, 1), £,,).

Proof. The middle diagram in Figure_IL1 corresponds to a virtuallgrtwisted contact

structure by[[45, Proposition 5.1] and therefore it canrethe standard ong,, which

is universally tight. The first and the last contact struesuare in fact isomorphic since
they admit isomorphic supporting open books —with page & dish three holes and

monodromy the product of one positive Dehn twist along eamimbdary component. This
last observation is simply an application bf [33, Lemma 3\8f have the desired result
sinceyc is the contact structure compatible with this open book ydedinition of C. [

R S

FIGURE 12. The handlebody diagram &f

The handlebody diagram @f given by its Lefschetz fibration description is depicted on
the left in Figuré_1R. One can verify thatis diffeomorphic to the manifold on the right by
handleslides and cancellations. By the lantern relationjrtduced open books @B and
0C are isomorphic. In particular, not ondy3 is diffeomorphic ta?C', but also the induced
contact structures are isomorphic as well. Thus, by Lemdiae have

(aBa faB) = (60, g@C) = (L(47 1)7 gst)'

It is clear that thel-manifolds B and C' are not even homotopy equivalent since, for
example, they have different Euler characteristics. Intaud we observe that,(C) = 0
andH,(C,Z) = Z, while 7 (B) = Z,, andHy(B, Z) = 0. Since the rational homology of
B agrees with the rational homology 6f*, B is called a rational homology-ball.

Cutting out a submanifold diffeomorphic to the disk-bunoler the sphere with Euler
number—4 from an ambient-manifold, and gluing in a rationdtball is a special case of
therational blowdownoperation introduced by Fintushel and Stern [37]. In ouation,
this means replacing' by B, which results in reducing the second Betti number, with the
cost of introducing possibly more complicated fundamegtaup.

Suppose that a monodromy factorization of some Lefschetatidn contains a consec-
utive product of four Dehn twists around mutually disjoiniees on the regular fiber, so
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that the union of these four curves bounds a subsurface hoorpbic to a sphere with
4-holes. Removing this product of four Dehn twists from thenodromy factorization and
inserting the corresponding product of three Dehn twistelwhppears on the right-hand
side of the lantern relation is callediantern substitution It follows that the effect of a
lantern substitution in the total space of a Lefschetz fibras a rational blowdown, which
was first observed in [29].

6.2. A generalized lantern relation: The daisy. Let S,,, denote a sphere witfp + 2)-
holes and leps,, ..., 8,41, %, 71, - - - » Yp+1 D€ the curves oi,,» as shown in Figure 13.
The identity

DP~ () D(m) -+ D(yp11) = D(B1) -+ - D(Bps1) € Topya

was calleddaisy relation[30].

Remark. This relation has first appeared in [78, Figure 11]. It waspehdently discov-
ered in [11], and subsequently used to solve other intaggptioblems about Stein fillings
of contact3-manifolds [9].

FIGURE 13. A(p + 2)-holedsphereS,,,,
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Let C, — D? denote the allowable Lefschetz fibration o®#r with regular fibers,
whose monodromy has the following factorization

DP"!(y0)D(m) - - D(Yp41)-

It is easy to verify that, is diffeomorphic to the linear plumbing @p — 1) disk bundles
overS? with Euler numbers-(p+2), —2, ..., —2, respectively and th&C, = L(p?,p—1).

Similarly, B, — D? denote the allowable Lefschetz fibration o@&rwith regular fiber
Sp+2 Whose monodromy has the following factorization

D(B) - - - D(Bpta)-

Then B, is diffeomorphic to thet-manifold whose handle decomposition is depicted in
Figure[14. Itis a fact thaB,, is a rational-ball such that B, = L(p?, p — 1). Cutting out

a submanifold diffeomorphic t@’, from an ambient smootfrmanifold and gluing in the
rational4-ball B, is called rational blowdown [37]. As a consequence the natiidplow-
down operation can be viewed as a monodromy substitutioredsulere the appropriate
relation in the mapping class group is the daisy relation.

p—1

FIGURE 14. The handlebody diagram of the ratioddball B,

According to [49],L(p?,p — 1) hasp + 1 distinct tight contact structures up to isotopy,
all of which are Stein fillable. Using a similar argument ashie proof of Lemma 61, one
can show that

(0B, &om,) = (0C,, Coc,) = (L(p*,p — 1), &)

Remark. According to [65] forp = 2 and [58] for allp > 2, there are two distinct
diffeomorphism classes of the minimal symplectic fillindg 6(p?, p — 1), ,,). The com-
pact4-manifolds B, and C,—which are not even homotopy equivalent—represent these
classes, wher€), is the minimal resolution, whilés,, is the Milnor fiber of the correspond-
ing cyclic quotient singularity. (In Sectidn 6.1, taks = B andC, = C'.)

6.3. Symplectic fillings of lens spaces and rational blowdownsWe first briefly review
Lisca’s classificatior [58] of symplectic fillings 01.(p, q), £,,), up to diffeomorphism. For
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integersl < ¢ < p, with (p,¢) = 1, recall that the Hirzebruch-Jung continued fraction is
given by

B:[al,ag,...,al]:al— a; >2foralll <i<|.

q I
Qa9 — 1

aj

The lens spacé.(p, q) is orientation preserving diffeomorphic to the linear phing of

circle bundles of Euler numbersa;, —as, . .., —a; over the sphere.
Let
LT
pb—q
whereb;, > 2 for 1 < i < k. A k-tuple of nonnegative integefs, ..., n;) is called
admissible if each of the denominators in the continuedifsadn,, . .., n;] is positive. It

is easy to see that an admissilbleuple of nonnegative integers is eith@) or consists
only of positive integers. Leg, C Z* denote the set of admissibletuples of nonnegative
integersn = (ny, ..., n,) such thafny, ..., ny] =0, and let

Zk(ﬁ):{(nl,,nk)GZHOSnZSbeOI’Z:l,,k}

Consider the chain of unknots inS® with framingsn, ns, . .., n;, respectively. For
anyn = (nq,...,n;) € 2, let N(n) denote the result of Dehn surgery on this framed link.
Itis easy to see tha¥ (n) is diffeomorphic taS* x S2. LetL = | J_, L; denote the framed
link in N(n), shown in Figuré_T5 in the complement of the chairkafnknots, wherd;
hasb; — n; components.

n1 2 Ng—1 ng
\
(\(— o o o ‘g\
\
~1-1 -1 —1=-1-1 -1-1-1 -1-1 -1
by —nq by — na bp—1—ng_1 b —ny

FIGURE 15. Lisca’s description of the fillingV/, ,(n)

The4-manifoldV, ,(n) with boundaryZ(p, ¢) is obtained by attachingthandles te5* x
D? along the framed link(L) € S x S? for some diffeomorphismp : N(n) — S x S2.
Note that this description is independent of the choice seince any self-diffeomorphism
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of S* x S? extends ta5* x D3. According to Lisca, any symplectic filling ¢f.(p, ¢), £.;)
is orientation-preserving diffeomorphic to a blowupl&f, ,(n) for somen € Zk(pfq).
Since every tight contact lens space is planar [79], eaclnmainrsymplectic filling of
(L(p, q),€,,) is deformation equivalent to a genus-zero allowable syatiglé efschetz fi-
bration overD? by Theorent 3.70. If[14], Bhupal and the author gave an alyorto de-

scribe any minimal symplectic filling afZ(p, q), £,;) as a genus-zero allowable Lefschetz
fibration overD? and showed that

Theorem 6.2. [14] Any minimal symplectic filling ofL(p, ¢),¢,,) is obtained by a se-
guence of rational blowdowns along linear plumbing graptetsng from the minimal
resolution of the corresponding cyclic quotient singuhari

Remark. When coupled with the results in [69], in which Nemethi ang&xxu-Pampu
proved that the classification of Milnor fibers for a cyclicagjent singularity agrees with

Lisca’s classification of symplectic fillingd.(p, ¢), £,,), Theoreni 62 immediately implies
[14] that any Milnor fiber of any smoothing of the complex taisnensional cyclic quotient

singularity can be obtained, up to diffeomorphism, by a sege of rational blowdowns
along linear plumbing graphs from the Milnor fiber diffeormpbic to the minimal resolu-

tion of the singularity.
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