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ABSTRACT. This is an expository article on the study of topology of Stein/symplectic
fillings of contact3-manifolds.

1. FILLINGS OF CONTACT MANIFOLDS

1.1. What is a Stein manifold?

Definition 1.1. A Stein manifold is an affine complex manifold, i.e., a complex manifold
that admits a proper holomorphic embedding into someC

N .

An excellent reference for Stein manifolds in the context ofsymplectic geometry is the
recent book of Cieliebak and Eliashberg [19]. In the following we give an equivalent defi-
nition of a Stein manifold.

Definition 1.2. An almost-complex structure on an even-dimensional manifoldX is a com-
plex structure on its tangent bundleTX, or equivalently a bundle mapJ : TX → TX with
J ◦ J = −idTX . The pair(X, J) is called an almost complex manifold. It is called a com-
plex manifold if the almost complex structure is integrable, meaning thatJ is induced via
multiplication byi in any holomorphic coordinate chart.

Example. The sphereSn admits an almost complex structure if and only ifn ∈ {2, 6}. It
is easy to see thatS2 is indeed complex, but currently it is not known whether or not S6

admits a complex structure.

Let φ : X → R be a smooth function on an almost complex manifold(X, J). We
setdCφ := dφ ◦ J (which is a1-form) and henceωφ := −ddCφ is a 2-form which is
skew-symmetric (by definition). In general,ωφ may fail to beJ-invariant, i.e, the condition
ωφ(Ju, Jv) = ωφ(u, v) may not hold for an arbitrary almost complex structureJ . However,

Lemma 1.3. If J is integrable, thenωφ is J-invariant.

Proof. [19, Section 2.2] The claim can be verified by a local computation. The Euclidean
spaceR2n with linear coordinates(x1, y1, . . . , xn, yn) has a standard complex structureJ
defined as

J(
∂

∂xj

) =
∂

∂yj

and J(
∂

∂yj

) = − ∂

∂xj

.

1
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The space(R2n, J) can be identified(Cn, i) via zj = xj + iyj, where we use linear coor-
dinates(z1, . . . , zn) for Cn andi =

√
−1 denotes the complex multiplication onCn. Let

φ : R2n = Cn → R be a smooth function. We calculate that

dφ =
∑

j

( ∂φ
∂xj

dxj +
∂φ

∂yj

dyj

)

=
∑

j

[
1

2

( ∂φ
∂xj

− i
∂φ

∂yj

)
(dxj + idyj) +

1

2

( ∂φ
∂xj

+ i
∂φ

∂yj

)
(dxj − idyj)]

=
∑

j

( ∂φ
∂zj

dzj +
∂φ

∂z̄j

dz̄j

)

= ∂φ+ ∂φ.

Since dzj ◦ i = idzj and dz̄j ◦ i = −idz̄j we have

dCφ =
∑

j

( ∂φ
∂zj

dzj ◦ i+
∂φ

∂z̄j

dz̄j ◦ i
)

=
∑

j

(
i
∂φ

∂zj

dzj − i
∂φ

∂z̄j

dz̄j

)
= i∂φ− i∂̄φ.

Usingd = ∂ + ∂̄ we get

ddCφ = (∂ + ∂̄)(i∂φ − i∂̄φ) = −2i∂∂φ

and henceωφ = 2i∂∂φ where more explicitly we can write

∂∂φ =
∑

j,k

∂2φ

∂zj∂z̄k

dzj ∧ dz̄k.

The form∂∂φ is i-invariant since for allj, k, we observe that

dzj ∧ dz̄k (iu, iv) = dzj(iu)dz̄k(iv) − dzj(iv)dz̄k(iu)

= iuj(−i)v̄k − ivj(−i)ūk

= uj v̄k − vj ūk

= dzj ∧ dz̄k (u, v).

It follows thatωφ is i-invariant. �

Definition 1.4. Let (X, J) be an almost complex manifold. A smooth functionφ : X → R

is calledJ-convex ifωφ(u, Ju) > 0 for all nonzero vectorsu ∈ TX.

The conditionωφ(u, Ju) > 0 is often described asωφ being positive on the complex
lines inTX, since for anyu 6= 0, the linear space spanned byu andJu can be identified
with C with its usual orientation.
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Let gφ be the2-tensor defined bygφ(u, v) := ωφ(u, Jv). TheJ-convexity condition in
Definition 1.4 is indeed equivalent togφ being positive definite, i.e.,gφ(u, u) > 0 for any
nonzero vectoru ∈ TX.

Lemma 1.5. If ωφ is J-invariant, thengφ is symmetric andHφ := gφ − iωφ is a Hermitian
form.

Proof. The2-tensorgφ is symmetric since:

gφ(u, v) = ωφ(u, Jv) (by definition)

= ωφ(−J2u, Jv) (J2 = −Id)
= ωφ(−Ju, v) (ωφ is J-invariant)

= −ωφ(v,−Ju) (ωφ is skew-symmetric)

= −gφ(v,−u) (by definition)

= gφ(v, u) (gφ is bilinear).

It is clear thatHφ is R-bilinear, sincegφ andωφ are bothR-bilinear. Now we verify that
Hφ is complex linear in the first variable:

Hφ(Ju, v) = gφ(Ju, v) − iωφ(Ju, v)

= gφ(v, Ju) + iωφ(v, Ju)

= ωφ(v,−u) + igφ(v, u)

= i
(
gφ(u, v) − iωφ(u, v)

)

= iHφ(u, v)

and we check that

Hφ(v, u) = gφ(v, u) + iωφ(v, u)

= gφ(u, v) − iωφ(u, v)

= Hφ(u, v).

�

Combining Lemma 1.3 and Lemma 1.5, we conclude that a smooth functionφ : X → R on
anycomplexmanifold(X, J) is J-convex if and only if the Hermitian formHφ is positive
definite.

Lemma 1.6. A smooth functionφ : Cn → R is i-convex if and only if the Hermitian matrix
( ∂2φ

∂zj∂z̄k

)
is positive definite.
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Proof. We sethjk :=
∂2φ

∂zj∂z̄k

and compute

ωφ(u, v) = 2i
∑

j,k

hj,kdzj ∧ dz̄k(u, v)

= 2i
∑

j,k

hj,k

(
dzj(u) ∧ dz̄k(v) − dzj(v) ∧ dz̄k(u)

)

= 2i
∑

j,k

hj,k(uj v̄k − vj ūk)

= 2i
∑

j,k

hj,kuj v̄k − 2i
∑

j,k

hj,kvj ūk

= 2i
∑

j,k

hj,kuj v̄k − 2i
∑

j,k

h̄k,jvj ūk (usedh̄k,j = hj,k)

= 2i
∑

j,k

hj,kuj v̄k − 2i
∑

j,k

h̄j,kūjvk (switchedj ↔ k in the second sum)

= −4 Im
(∑

j,k

hjkuj v̄k

)

and hence it follows that

Hφ(u, v) = gφ(u, v) − iωφ(u, v) = 4
∑

j,k

hjkuj v̄k.

Therefore we conclude that the Hermitian formHφ is positive definite (i.e.,Hφ(u, u) > 0

for all u 6= 0) if and only if the Hermitian matrix
( ∂2φ

∂zj∂z̄k

)
is positive definite. �

Definition. Any real valued smooth function onX is called exhausting if it is proper and
bounded below.

Lemma 1.7. Every Stein manifold admits an exhaustingJ-convex function.

Proof. We claim that the mapφ : CN → R defined asφ(z) = |z|2 is an exhaustingi-
convex function onCN with respect to the standard complex structurei : C

N → C
N . To

see thatφ is i-convex we simply observe that

φ(z) =
∑

zj z̄j and
∂2φ

∂zj∂z̄k

=
∂zk

∂zj

= δjk.
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Thus
( ∂2φ

∂zj∂z̄k

)
is the identity matrix which is obviously positive definite.Sinceφ is proper

andφ(z) ≥ 0, its restriction to any properly embedded holomorphic submanifold ofCN is
an exhaustingi-convex function. �

The converse of Lemma 1.7 is due to Grauert:

Theorem 1.8(Grauert [47]). A complex manifold(X, J) is Stein if and only if it admits an
exhaustingJ-convex functionφ : X → R.

Remark. The classical definition of a Stein manifold originates fromthe concept of holo-
morphic convexity. We refer to [19, Section 5.3] for an extensive discussion on the equiv-
alence of the affine definition, the definition usingJ-convex functions (Theorem 1.8) and
the classical definition of a Stein manifold.

Every exhaustingJ-convex function on a Stein manifold(X, J) becomes an exhausting
J-convexMorsefunction by aC2-small perturbation. The following result of Milnor puts
strong restrictions on the topology of the Stein manifolds.

Proposition 1.9(Milnor). If (X, J) is a Stein manifold of real dimension2n, then the index
of each critical point of aJ-convex Morse function onX is at most equal ton.

Therefore, ifX is a smooth manifold of real dimension2n, a necessary condition for
X to carry a Stein structure is that its handle decomposition does not include any handles
of indices greater thann. Note that there is another obvious necessary condition—the
existence of an almost complex structure onX. Eliashberg proved that, forn > 2, these
two necessary conditions are also sufficient for the existence of a Stein structure:

Theorem 1.10(Eliashberg [23]). LetX be a2n-dimensional smooth manifold, wheren >
2. Suppose thatX admits an almost complex structureJ , and there exists an exhausting
Morse functionφ : X → R without critical points of index> n. ThenJ is homotopic
through almost complex structures to a complex structureJ ′ such thatφ is J ′-convex. In
particular, the complex manifold(X, J ′) is Stein.

For the casen = 2, the corresponding result is described in Theorem 2.4.

1.2. Symplectic geometry of Stein manifolds.In the following, we briefly explain how
symplectic geometry is built into Stein manifolds.

Definition 1.11. A symplectic form on a2n-dimensional manifoldX is a differential2-
formω that is closed(dω = 0) and non-degenerate, meaning that for every nonzero vector
u ∈ TX there is a vectorv ∈ TX such thatω(u, v) 6= 0. The pair(X,ω) is called a
symplectic manifold. A submanifoldS ⊂ X is called symplectic ifω|S is non-degenerate
and it is called isotropic if for allp ∈ S, TpS is contained in itsω-orthogonal complement
in TpX.
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Remark. The non-degeneracy condition in Definition 1.11 is equivalent toωn 6= 0, where
ωn denotes then-fold wedge productω ∧ . . . ∧ ω. A symplectic manifold(X2n, ω) has a
natural orientation defined by the non-vanishing top formωn. We will always assume that
a symplectic manifold(X2n, ω) is oriented such thatωn > 0. It follows that an orientable
closed manifoldX2n can carry a symplectic formω only if H2(X,R) is non-trivial, since
any[ω] 6= 0 ∈ H2(X,R). The sphereSn, for example, is not symplectic forn > 2.

Definition 1.12. We say that a symplectic formω on an even dimensional manifoldX is
compatiblewith an almost complex structureJ if ω is J-invariant andω tamesJ , i.e.,
ω(u, Ju) > 0 for all nonzero vectorsu ∈ TX.

It is well-known (see, for example, [66, 17]) that

Theorem 1.13.For any symplectic manifold(X,ω), there exists an almost complex struc-
ture onX compatible withω and the space of compatible almost complex structures is
contractible.

Remark. This statement in fact holds true for any symplectic vector bundle over a smooth
manifold, since only the non-degeneracy of the formω is used in the proof.

Suppose that(X, J) is a complexmanifold. Since for anyφ : X → R, the 2-tensor
gφ is symmetric as we showed in Section 1.1,φ is J-convex if and only ifgφ defines a
Riemannian metric onX. This is indeed equivalent to requiring thatωφ is non-degenerate
(and hence a symplectic form compatible withJ).

Definition 1.14. A vector fieldV on a symplectic manifold(X,ω) is called a Liouville
vector field ifLV ω = ω, whereL stands for the Lie derivative.

Suppose that(X, J, φ) is a Stein manifold. Let∇φ denote the gradient vector field with
respect to the metricgφ, which is uniquely determined by the equation

dφ(u) = gφ(∇φ, u).
Define the1-form αφ := ι∇φωφ, that is,αφ(v) = ωφ(∇φ, v). (The1-form αφ is ωφ-dual to
the vector field∇φ.) It follows that

Lemma 1.15.The gradient vector field∇φ is a Liouville vector field forωφ.

Proof. To see this we first observe that

(ι∇φωφ)(v) = ωφ(∇φ, v) = −gφ(∇φ, Jv) = −dφ(Jv) = −(dCφ)(v).

Thus, by Cartan’s formula, we have

L∇φωφ = d(ι∇φωφ) + ι∇φdωφ = d(ι∇φωφ) = −d(dCφ) = ωφ.

�
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Note that a genericJ-convex function is a Morse function. Moreover, for an exhausting
J-convex Morse functionφ : X → R on a Stein manifold(X, J), the gradient vector field
∇φ may be assumed to be complete, after composingφ by a suitable functionR → R.

Definition 1.16. A Weinstein structure on a2n-dimensional manifoldX is a triple(ω, V, φ),
whereω is a symplectic form,φ : X → R is an exhausting Morse function andV is a com-
plete Liouville vector field which is gradient-like forφ. The quadruple(X,ω, V, φ) is called
a Weinstein manifold.

We conclude that every Stein manifold(X, J, φ) is a Weinstein manifold(X,ωφ,∇φ, φ).
Moreover, the symplectic structure defined above on a Stein manifold(X, J) is independent
of the choice of theJ-convex function in the following sense:

Theorem 1.17. [19, Chapter 11]Let φj be an exhaustingJ-convex Morse function on a
Stein manifold(X, J) such that∇φj is complete forj = 1, 2. Then(X,ωφ1

) is symplecto-
morphic to(X,ωφ2

).

Definition 1.18. Two symplectic manifolds(X1, ω1) and (X2, ω2) are said to be symplec-
tomorphic if there exists a diffeomorphismϕ : X1 → X2 such thatϕ∗ω2 = ω1.

Remark. We would like to point out thata Stein manifold is non-compact. In fact, no
compactcomplex manifold of complex dimension at least one can be a complex analytic
submanifold of any Stein manifold. This is because ifM is a compact analytic subman-
ifold of a Stein manifold, then each coordinate function onCN restricts to a nonconstant
holomorphic function onM which is a contradiction unlessM is zero-dimensional.

1.3. Contact manifolds. The reader is advised to turn to [40] for a thorough discussion
about the topology of contact manifolds.

Definition 1.19. A contact structure on a(2n + 1)-dimensional manifoldY is a tangent
hyperplane fieldξ = kerα ⊂ TY for some1-formα such thatα ∧ (dα)n 6= 0. The1-form
α is called a contact form and the pair(Y, ξ) is called a contact manifold.

Note that the conditionα∧ (dα)n 6= 0 is independent of the choice ofα definingξ, since
any other1-form definingξ must be of the formhα, for some non-vanishing real valued
smooth functionh onY and we have:

(hα) ∧ (d(hα))n = (hα) ∧ (hdα + dh ∧ α)n = hn+1(α ∧ (dα)n) 6= 0.

In this article, we assume thatα is global1-form, which is equivalent to the quotient
line bundleTY/ξ being trivial. In this case, the contact structureξ = kerα on Y is said
to be co-orientableandY is necessarily orientable sinceα ∧ (dα)n is a non-vanishing
top-dimensional form, i.e., a volume form onY . Moreoverξ is calledco-orientedif an
orientation forTY/ξ is fixed. WhenY is equipped with a specific orientation, one can
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speak of apositiveor anegativeco-oriented contact structureξ onY , depending on whether
the orientation induced byξ agrees or not with the given orientation ofY .

In terms of the defining1-form α, the contact condition in Definition 1.19 is equivalent
to dα|ξ being non-degenerate. In particular,(ξ, dα|ξ) is a symplectic vector bundle, where
for any co-oriented contact structureξ, the symplectic structure onξp is defined uniquely
up to a positive conformal factor.

All the contact structures in this paper are assumed to be positive and co-oriented.

Definition 1.20. Two contact manifolds(Y1, ξ1) and(Y2, ξ2) are said to be contactomorphic
if there exists a diffeomorphismϕ : Y1 → Y2 such thatϕ∗(ξ1) = ξ2.

Example 1.21.In the coordinates(x1, y1, . . . , xn, yn, z), the standard contact structureξst
onR2n+1 can be given, up to contactomorphism, as the kernel of any of the1-forms

dz +

n∑

i=1

xi dyi

dz −
n∑

i=1

yi dxi

dz +

n∑

i=1

xi dyi − yi dxi = dz +

n∑

i=1

r2
i dθi,

where, for the last equality, we used the polar coordinates(ri, θi) in the(xi, yi)-plane.

An important class of submanifolds of contact manifolds is given by the following defini-
tion.

Definition 1.22. A submanifoldL of a contact manifold(Y 2n+1, ξ) is called an isotropic
submanifold ifTpL ⊂ ξp for all p ∈ L. An isotropic submanifold of maximal dimensionn
is called a Legendrian submanifold.

1.4. What is a Stein/symplectic filling?

Definition 1.23. A closed contact manifold(Y, ξ) is said to be strongly symplectically fil-
lable if there is a compact symplectic manifold(W,ω) such that∂W = Y as oriented
manifolds,ω is exact near the boundary and its primitiveα can be chosen in such a way
thatker(α|Y ) = ξ. In this case we say that(W,ω) is a strong symplectic filling of(Y, ξ).

Definition 1.24. We say that a compact symplectic manifold(W,ω) is a convex filling of
closed contact manifold(Y, ξ) if ∂W = Y as oriented manifolds and there exists a Liouville
vector fieldV defined in a neighborhood ofY , pointing out ofW along Y , satisfying
ξ = ker(ιV ω|Y ). In this case,(Y, ξ) is said to be the convex boundary of(W,ω). If V
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points intoW alongY , on the other hand, then we say that(W,ω) is a concave filling of
(Y, ξ) and(Y, ξ) is said to be the concave boundary of(W,ω).

It is easy to see that the notion of a convex filling is the same as the notion of a strong
symplectic filling: Given a convex filling, define the1-form α := ιV ω nearY and observe
thatdα = ω by Cartan’s formula. Conversely, given a strong symplecticfilling, one solves
the equationα := ιV ω for V near the boundaryY , and observes thatV is a Liouville vector
field again by Cartan’s formula.

Lemma 1.25. If V is a Liouville vector field for a symplectic formω on a manifoldX, then
the1-formα := ιV ω|Y is a contact form on any hypersurfaceY in X transverse toV .

Proof. The form

α ∧ (dα)n = ιV ω ∧ ωn =
1

n+ 1
ιV (ωn+1)

restricts to a volume form on any hypersurfaceY in X transverse toV . �

Suppose that(X, J, φ) is a Stein manifold. Then, a regular level setφ−1(t) is a compact
hypersurface inX which is transverse to the Liouville vector field∇φ for the symplectic
formωφ. Thereforeαφ restricts to a contact form onφ−1(t) and the sublevel setφ−1(−∞, t]
is a special kind of strong symplectic filling of the contact manifold (φ−1(t), ker(αφ)),
which leads to the following definition.

Definition 1.26. A compact complex manifold(W,J) with boundary∂W = Y is a Stein
domain if it admits an exhaustingJ-convex functionφ : W → R such thatY is a regular
level set. Then we say that the contact manifold(Y, ξ = ker(αφ|Y )) is Stein fillable and
(W,J) is a called a Stein filling of it.

Remark. A Stein filling is a strong symplectic filling, where the symplectic form is exact,
because∇φ is a Liouville vector field forωφ as was shown in Lemma 1.15.

We can describe the contact structureker(αφ) on the hypersurfaceφ−1(t) with another
point of view as follows. LetY be a oriented smooth real hypersurface in acomplex
manifold (X, J). The complex tangenciesξ := TY ∩ J(TY ) alongY form a unique
complex hyperplane distribution inTY . The complex orientation ofξ, together with the
orientation ofY gives a co-orientation toξ, and henceξ = kerα for some1-form α,
whereα defines the given co-orientation. TheLevi formof Y is defined asωY (u, v) :=
dα|ξ(u, Jv). Note that by taking the co-orientation ofY into account,ωY is defined up
to multiplication by a positive function. The hypersurfaceY is calledJ-convexif its Levi
form is positive definite, i.e.,ωY (u, Ju) > 0 for every non-zerou ∈ ξ. This implies thatξ
is a contact structure onY sincedα is non-degenerate onξ.
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We say that a compact complex manifold(W,J) with J-convex boundaryY is aholo-
morphic fillingof its contact boundary(Y, ξ). It turns out that, if(X, J, φ) is any Stein man-
ifold, andt is a regular value ofφ : X → R, thenωY (u, v) = ωφ(u, v), whereY = φ−1(t).
This implies that a Stein filling is a holomorphic filling.

The upshot is that every regular level set of aJ-convex function on a Stein manifold is a
J-convex hypersurface equipped with a contact structure given by the complex tangencies
to the hypersurface.

Theorem 1.27(Bogomolov and de Oliveira [16]). If (W,J) is a minimal compact com-
plex manifold ofcomplex dimension2 with J-convex boundary(∂W, ξ), thenJ can be
deformed toJ ′ such that(W,J ′) is a Stein filling of(∂W, ξ).

In particular, a closed contact3-manifold is Stein fillable if and only if it is holomorphi-
cally fillable—which is not true in higher dimensions. Thereis also the notion of a weak
symplectic filling which we will discuss only for3-dimensional contact manifolds. We
refer the reader to [64], for the detailed study of weak versus strong symplectic fillings of
higher dimensional contact manifolds.

Definition 1.28. A contact3-manifold(Y, ξ) is said to be weakly symplectically fillable if
there is a compact symplectic 4-manifold(W,ω) such that∂W = Y as oriented manifolds
andω|ξ > 0. In this case we say that(W,ω) is a weak symplectic filling of(Y, ξ).

2. COMPLEX DIMENSION TWO: STEIN SURFACES AND CONTACT3-MANIFOLDS

For the rest of this paper, we focus on the topology of complex2-dimensional Stein
manifolds (namely, Stein surfaces) and contact3-manifolds. We assume that all the contact
structures are co-oriented and positive.

We begin with describing topological counterparts—Lefschetz fibrations and open books
for the sake of completeness. In the following, we assume that the reader is familiar with
smooth, contact and symplectic surgery (cf. [40, 46, 75]).

Throughout the paper, we will denote a positive Dehn twists along a curveγ by D(γ),
and we will use the usual composition of functions for expressing the products of Dehn
twists. In addition, we will useDn(γ) to denote(D(γ))n for any integern.

The mapping class groupΓg,r of an oriented compact surfaceF of genusg ≥ 0 with
r ≥ 0 boundary components is defined to be the group of isotopy classes of orientation-
preserving self diffeomorphisms ofF fixing the points on the boundary. The isotopies
are also assumed to fix the boundary pointwise. Ifr = 0, we sometimes dropr from the
notation and useΓg to denote the mapping class group of a closed genusg surface.

2.1. Lefschetz fibrations and open books.Suppose thatW andΣ are smooth oriented
manifolds possibly with nonempty boundaries of dimensionsfour and two, respectively.



ON THE TOPOLOGY OF FILLINGS OF CONTACT3-MANIFOLDS 11

Definition 2.1. A smooth mapf : W → Σ is called a Lefschetz fibration iff has finitely
many critical points in the interior ofW , and there are orientation preserving complex
chartsU, V around each critical pointp andq = f(p), respectively, on whichf is of the
form (z1, z2) → z2

1 + z2
2 .

For each critical valueq ∈ Σ, the fiberf−1(q) is called asingularfiber, while the other
fibers are calledregular. Throughout this paper, we will assume that a regular fiber is
connected and each singular fiber contains a unique criticalpoint. It is a classical fact that
for any loopa in Σ that does not pass through any critical values and that includes a unique
critical value in its interior,f−1(a) is a surface bundle overa, which is diffeomorphic to

(F × [0, 1])/((1, x) ∼ (0, D(γ)(x))

whereγ denotes thevanishing cycleon a smooth fiberF over a point on the loopa. The
singular fiber which is the inverse image of an interior pointof a is obtained by collapsing
the vanishing cycle to a point.

In this paper, we will mainly use Lefschetz fibrations withΣ = D2 or S2. Suppose first
thatΣ = D

2 and choose an identification of the regular fiber, say over a fixed base point
b near∂D2, with an (abstract) oriented connected surfaceF of genusg ≥ 0 with r ≥ 0
boundary components. Now choose an arc that connects the point b to each critical value
so that these arcs are pairwise disjoint inD2. Label these arcs by the set{c1, c2, . . . , cn} in
the increasing order as you go counterclockwise direction around a small loop around the
base pointb, and label the critical values as{q1, q2, . . . , qn} corresponding to the labeling
of the arcs as depicted in Figure 1. Consider a loopai around the critical valueqi, which
does not pass through or include in its interior any other critical values and letγi denote the
corresponding vanishing cycle.

a1

a2

an

q1

q2

qn

c1

c2

cn

b

FIGURE 1.



12 BURAK OZBAGCI

Note thatf−1(∂D2) is anF -bundle overS1 = ∂D2 which is diffeomorphic to

(F × [0, 1])/((1, x) ∼ (0, ψ(x))

for some self-diffeomorphismψ of the fiberF preserving∂F pointwise. It follows that

ψ = D(γn)D(γn−1) · · ·D(γ1) ∈ Γg,r.

The product of positive Dehn twists above is called amonodromy factorizationor apositive
factorizationof the monodromyψ ∈ Γg,r of the Lefschetz fibration overD2. Conversely,
a positive factorization of an element inΓg,r determines a Lefschetz fibration overD2,
uniquely up to some natural equivalence relations which we explain next.

If one chooses a different identification of the reference fiber over the base point with
the abstract oriented surfaceF , then the monodromy of the Lefschetz fibration takes the
form ϕψϕ−1, whereϕ is the appropriate element ofΓg,r. In this case, the monodromy
factorization appears as

ϕψϕ−1 = ϕ
(
D(γn)D(γn−1) · · ·D(γ1)

)
ϕ−1

= ϕD(γn)ϕ
−1ϕD(γn−1)ϕ

−1ϕ · · ·ϕ−1ϕD(γ1)ϕ
−1

= D(ϕ(γn))D(ϕ(γn−1)) · · ·D(ϕ(γ1)),

where the last equality follows by the fact that the conjugation ϕD(γ)ϕ−1 of a positive
Dehn twistD(γ) is isotopic to the positive Dehn twistD(ϕ(γ)).

Note that the trivial identity

D(γi+1)D(γi) =
(
D(γi+1)D(γi)D

−1(γi+1)
)
D(γi+1)

would also allow us to modify the monodromy factorization ofa Lefschetz fibration by
switching the order of two consecutive positive Dehn twists, where we conjugate one by
the other. Such a modification is called aHurwitz moveand obtained by switching the
order of two consecutive arcs connecting the base point to critical values that we chose
to describe the monodromy factorization. Theisomorphism classof a Lefschetz fibration
(overD

2) is determined up to global conjugation and Hurwitz moves. For further details
we refer to [46, Chapter 8].

Now suppose that∂W = ∅, andf : W → S2 is Lefschetz fibration, where the genusg
fiberF is necessarily closed. We may assume that all the critical values off lie on a disk
in the baseS2, and the fibration is trivial on the complementary disk. It follows that in this
case, the monodromy factorization satisfies

D(γn)D(γn−1) · · ·D(γ1) = 1 ∈ Γg

We now turn our attention to the case∂W 6= ∅ andΣ = D
2. Under the assumption

that∂F 6= ∅, the boundary∂W consists of two parts: The “vertical” boundaryf−1(∂D2)
and the “horizontal” boundary∂F × D2 that meet each other at the corner∂F × ∂D2.
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After smooothing out the corners, we see that∂W acquires an open book decomposition
by which we mean the following:

Definition 2.2. An open book decomposition of a closed and oriented3-manifoldY is a
pair (B, f) consisting of an oriented linkB ⊂ Y , and a locally-trivial fibrationf : Y −
B → S1 such that each component ofB has a trivial tubular neighborhoodB × D2 in
whichf is given by the angular coordinate in theD2-factor.

HereB is called the binding and the closure of each fiber, which is a Seifert surface for
B, is called a page. We orient each page so that the induced orientation on its boundary
agrees with that of fixed orientation of the bindingB.

The (geometric)monodromyof an open book is defined as the self-diffeomorphism of
an arbitrary page —identified with an abstract oriented genus g ≥ 0 surfaceF with r ≥ 1
boundary components—which is given by the first return map ofa vector field that is trans-
verse to the pages and meridional nearB. Note that, up to conjugation, the monodromy of
an open book is determined as element inΓg,r. It is clear that the monodromy of the open
book on the boundary of a Lefschetz fibration can be identifiedwith the monodromy of the
Lefschetz fibration.

2.2. Open books and contact structures.

Definition 2.3. A contact structureξ on a closed oriented3-manifoldY is said to be sup-
ported by the open book(B, f) if there is a contact formα for ξ such thatα|TB > 0 and
dα|f−1(θ) > 0, for eachθ ∈ S1.

Remark. A contact1-formα satisfying the conditions above is sometimes called a Giroux
form.

In [87], Thurston and Winkelnkemper constructed a contact form on a3-manifold Y
using an open book decomposition ofY . Their construction was refined by Giroux showing
that an open book supports a unique contact structure, up to isotopy.

Conversely, for any given contact structureξ in a 3-manifold, Giroux [44] constructed
an open book supportingξ. As a matter of fact, Giroux established a bijection betweenthe
set of isotopy classes of contact structures on a closed3-manifoldY and the set of open
book decompositions ofY , up to positive stabilization/destabilization.

Giroux’s correspondence is of central importance in the subject at hand, and we refer to
Etnyre’s elaborate lecture notes [35] for details.

2.3. Stein domains and Lefschetz fibrations.Before we state a topological characteri-
zation of Stein domains due to Eliashberg and Gompf, we make some simple preliminary
observations: By attachingm 1-handles to a0-handle we obtain♮mS1 ×D3 whose bound-
ary is#mS

1 × S2. Eliashberg [23] showed that♮mS1 ×D3 admits a Stein structure so that
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it is a Stein filling of#mS
1 × S2 equipped with its standard contact structure. The follow-

ing theorem is a key result in the subject which made the studyof Stein surfaces/domains
accessible to low-dimensional topologists.

Theorem 2.4(Eliashberg[23], Gompf[45]). A smooth handlebody consisting of a0-handle,
some1-handles and some2-handles admits a Stein structure if the2-handles are attached
to the Stein domain♮mS1×D3 along Legendrian knots in the standard contact#mS

1×S2

such that the attaching framing of each Legendrian knot is−1 relative to the framing
induced by the contact planes. Conversely, any Stein domainadmits such a handle decom-
position.

Similar to the handle decomposition of a Stein domain described in Theorem 2.4, there
is a handle decomposition of a Lefschetz fibration overD2 consisting a0-handle, some
1-handles and some2-handles as follows: A neighborhoodF × D2 of a regular fiberF
is given by attaching appropriate number of1-handles to a0-handle. This is because the
surfaceF can be described by attaching2-dimensional1-handles to a2-dimensional disk,
andF ×D2 is a thickening of this handle decomposition in4-dimensions.

Then, since each singularity of a Lefschetz fibration is modeled on complex Morse func-
tion (z1, z2) → z2

1 + z2
2 , for each singular fiber, a2-handle is attached toF ×D2 along the

corresponding vanishing cycle. The crux of the matter is that the attaching framing of each
such2-handle is−1 relative to the framing induced by the fiber. Therefore ifW → D2 is a
Lefschetz fibration, thenW has a handle decomposition

W = (F ×D2) ∪H1 ∪ · · · ∪Hn

where, for each1 ≤ i ≤ n, the 2-handleHi is attached along the vanishing cycleγi.
One can easily compute some basic topological invariants ofthe4-manifoldW , using its
corresponding cell-decomposition. Letχ denote the Euler characteristic.

Lemma 2.5. The first integral homology groupH1(W,Z) is isomorphic to the quotient of
H1(F,Z) by the normal subgroup〈[γ1], . . . , [γn]〉 generated by the homology classes of the
vanishing cycles. Moreover,χ(W ) = χ(F ) + n.

Definition 2.6. We say that a Lefschetz fibration overD
2 is allowable if the regular fiber

has nonempty boundary and each vanishing cycle is homologically nontrivial on the fiber.

Next we show that ifW → D2 is an allowable Lefschetz fibration thenW admits a Stein
structure (cf. [2, 63]) so that the induced contact structure on∂W is supported by the open
book induced by the Lefschetz fibration. Suppose thatW admits a handle decomposition
as in the previous paragraph and letWi → D2 denote the Lefschetz fibration so that

Wi = (F ×D2) ∪H1 ∪ · · · ∪Hi.

We will show thatW admits a Stein structure by induction. Suppose thatWi−1 admits a
Stein structure so that the induced contact structure on∂Wi−1 is supported by the open
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book induced by the Lefschetz fibrationWi−1 → D2. By the work of Torisu [88], we can
assume the open book has aconvexpage that contains the attaching curveγi of the2-handle
Hi. Moreover, by theLegendrian Realization Principle[49], γi can be made Legendrian
so that the framing induced by the contact planes agrees withthat of induced from the
page of the open book. This is precisely where we require the Lefschetz fibration to be
allowable since Legendrian Realization Principle only works for homologically nontrivial
simple closed curves. As a consequence,Wi = Wi−1 ∪ Hi admits a Stein structure, by
Theorem 2.4.

Furthermore, the induced contact structure on∂Wi is supported by the induced open
book by Proposition 2.7, since the effect of attaching aWeinstein2-handle alongγi corre-
sponds to Legendrian surgery along the same curve on the contact boundary∂Wi.

Proposition 2.7(Gay [39]). Suppose(Y, ξ) is a contact3-manifold supported by the open
book with pageF and monodromyψ. Then the contact manifold obtained by performing a
Legendrian surgery on a knotL contained in some page is is supported by the open book
with the same pageF and monodromyψ ◦D(L).

For the initial step of the induction we just observe thatF ×D2 ∼= ♮mS
1 ×D3 admits a

Stein structure so that it is the Stein filling of the standardcontact structure on its boundary
#mS

1 × S2 (see Section 4.2).
Conversely, a Stein domain admits an allowable Lefschetz fibration overD2 which was

proved in [2, 3] and [63]. By a refinement of the algorithm in [2], Plamenevskaya showed,
in addition, that the induced contact structure on the boundary is supported by the resulting
open book [76, Appendix A]. This leads to the following topological characterization of
Stein domains.

Theorem 2.8. A Stein domain admits an allowable Lefschetz fibration overD2 and con-
versely an allowable Lefschetz fibration overD2 admits a Stein structure. Moreover the
contact structure induced by the Stein structure on the boundary is supported by the open
book induced by the Lefschetz fibration.

2.4. The adjunction inequality for Stein surfaces.

Theorem 2.9(Lisca-Matić [59]). A Stein filling(W,ωφ) admits a holomorphic embedding
as a domain inside a minimal complex surfaceX of general type, withb+2 (X) > 1, such
thatωX |W = ωφ, whereωX denotes the K̈ahler form onX.

An immediate corollary of Theorem 2.9 and Seiberg-Witten theory is an adjunction in-
equality :

Theorem 2.10([1, 60]). If W is a Stein domain, andΣ ⊂ W is a closed, connected,
oriented, embedded surface of genusg, then

[Σ]2 + |〈c1(W ), [Σ]〉| ≤ 2g − 2
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unlessΣ is a null-homologous sphere, wherec1(W ) := c1(W,J) ∈ H2(W,Z) denotes the
first Chern class.

Corollary 2.11. A Stein surface cannot contain a homologically essential smoothly em-
bedded sphereS with [S]2 ≥ −1.

3. A BASIC PROBLEM

A strong symplectic filling of a contact3-manifold is a weak symplectic filling since
dα is a symplectic form on the contact planesξ = kerα for any contact1-form α. The
converse is shown to be true for rational homology spheres:

Theorem 3.1. [25] [71] [27, Prop. 4.1]Suppose that(W,ω) is a weak symplectic filling of
(Y, ξ), whereY is a rational homology sphere. Thenω can be modified to a new symplectic
form ω̃, where this modification is supported in a neighborhood of∂W , so that(W, ω̃)
becomes a strong symplectic filling of(Y, ξ).

Nevertheless, for an arbitrary closed contact3-manifold we have

{Stein fillings} ⊆ {strong symplectic fillings} ⊆ {weak symplectic fillings}
where the inclusions are shown to be strict for some contact3-manifolds:

• Eliashberg [26] showed that there are weakly but not strongly symplectically fillable
contact structures onT 3, and further examples of this kind were given on torus bundles
over the circle by Ding and Geiges [21].

• Using the contact Ozsváth-Szabó invariants, Ghiggini [44] proved that for any even
positive integern, the Brieskorn3-sphere−Σ(2, 3, 6n + 5) (see [75] for its definition)
admits a strongly symplectically fillable contact structure which is not Stein fillable.

Definition 3.2. We say that two symplectic4-manifolds(W1, ω1) and (W2, ω2) with con-
vex boundary are symplectically deformation equivalent ifthere is a diffeomorphismϕ :
W1 → W2 such thatϕ∗ω2 can be deformed toω1 through a smooth 1-parameter family of
symplectic forms that are all convex at the boundary.

As a consequence of the above discussion, the following problem arises naturally in the
study of the topology of fillings of contact3-manifolds:

Basic Problem: Given a closed contact3-manifold, describe all of its Stein (or minimal
strong/weak symplectic) fillings up to diffeomorphism (or symplectic deformation).

To begin with, we need to know that the given contact3-manifold(Y, ξ) admits at least
one weak symplectic filling. However, some oriented closed3-manifolds can not admit any
symplectic fillings at all. For example,
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Theorem 3.3(Lisca [56]). The Poincaŕe homology3-sphere with its natural orientation
reversed admits no fillable contact structure.

Proof. Let E denote the4-manifold with boundary obtained by plumbing oriented disk
bundles over the sphere according to the positiveE8 diagram. Then∂E is diffeomorphic
to−P , whereP denotes the Poincaré homology sphere with its natural orientation.

2

2 2 2 2 2 2 2

FIGURE 2. The positiveE8 diagram

Suppose thatW is a symplectic filling of−P ∼= ∂E. ThenW can be symplectically
embedded into aclosedsymplectic4-manifold such thatb+2 (X \ int(W )) > 0, by Theo-
rem 3.5. SinceP ∼= Σ(2, 3, 5) admits a positive scalar curvature metric, a standard result
from gauge theory [93] implies thatb+2 (W ) = 0. HenceW ∪ (−E) is a negative definite
closed smooth4-manifold, which can not exist by Donaldson’s famous diagonalizability
result [22]. �

Remark 3.4. Lisca [57] proved the same result for the boundaries of the plumbings ac-
cording to the positiveE7 andE6 diagrams.

Theorem 3.5(Eliashberg [27], Etnyre [34]). Any weak filling of a contact 3-manifold can
be symplectically embedded into a closed symplectic 4-manifold with b+2 > 1.

Recall that a knot in a contact3-manifold is called Legendrian if it is everywhere tangent
to the contact planes. For anynull-homologousLegendrian knotL in a contact3-manifold,
the Thurston-Bennequin numbertb(L) is the contact framing ofL measured with respect
to the Seifert framing.

An embedded diskD in a contact3-manifold(Y, ξ) is called overtwisted if at each point
p ∈ ∂D we haveTpD = ξp. A contact3-manifold which contains such an overtwisted disk
is calledovertwisted, otherwise it is calledtight—which is the fundamental dichotomy in3-
dimensional contact topology. Note that∂D of an overtwisted disk is a Legendrian unknot
with tb(∂D) = 0. If (Y, ξ) admits a topologically unknotted Legendrian knotK with
tb(K) = 0, then(Y, ξ) is overtwisted. This can be taken as the definition of an overtwisted
manifold.

For any null-homologous Legendrian knotK in an arbitrary contact3-manifold, we can
find aC0-small isotopy that decreasestb(K) by any integer, but it is not always possible
to increasetb(K). If (Y, ξ) is overtwisted, however, any null-homologous knotK can be
made Legendrian withtb(K) realizing any preassigned integer (see [45, p. 625]).
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Theorem 3.6(Eliashberg-Gromov [28]). If a contact3-manifold is weakly symplectically
fillable, then it is tight.

Proof. Here we give a sketch of a proof (cf. [75, Thm. 12.1.10]) of Theorem 3.6 which
is very different from the original proof. Suppose that(W,ω) is a symplectic filling of an
overtwisted contact3-manifold(Y, ξ). Then, by the discussion above, there is an embedded
diskD ⊂ Y such that∂D is Legendrian and the framing on∂D induced by the contact
planes differs by+2 from the surface framing induced byD, i.e.,tb(∂D) = 2. By attaching
a Weinstein2-handle along∂D to (W,ω) we obtain a weak symplectic filling(W ′, ω′) of
the surgered contact3-manifold(Y ′, ξ′) (see [36, Lemma 2.6]).

Now we claim that(W ′, ω′) contains an essential sphereS with self-intersection(+1).
The sphereS is obtained by gluingD with the core disk of the2-handle, and[S]2 = 1
follows from the fact that the Weinstein2-handle is attached with framingtb(∂D) − 1.

By Theorem 3.5,(W ′, ω′) can be (symplectically) embedded into a closed symplectic
4-manifoldX with b+2 (X) > 1, which contradicts to the combination of the following two
results: Witten [93] showed that ifX is a smooth closed4-manifold withb+2 (X) > 1 that
contains an embedded essential sphereS of nonnegative self-intersection, then the Seiberg-
Witten invariantSWX vanishes identically. On the other hand, Taubes [85] provedthat if
(X,ω) is a closed symplectic4-manifold withb+2 (X) > 1, thenSWX(c1(X,ω)) 6= 0. �

The first examples proving that the converse of Theorem 3.6 isfalse were discovered by
Etnyre and Honda [36]. Soon after, a variety of such exampleswere constructed by Lisca
and Stipsicz [61, 62] using Heegaard Floer theory.

Theorem 3.7 (Etnyre-Honda [36]). Let Y1 (resp. Y2) be the Seifert fibered space over
S2 with Seifert invariants(−1

2
, 1

4
, 1

4
) (resp. (−2

3
, 1

3
, 1

3
)). ThenY1 admits one tight con-

tact structure andY2 admits two nonisotopic tight contact structures that are not weakly
symplectically fillable.

Remark. The non-fillability part of Theorem 3.7 essentially followsfrom Lisca’s result we
stated in Remark 3.4, but showing tightness of the contact structures is much harder. We
would like to point out thatY1 andY2 are both torus bundles over the circle.

On the other hand, as we will discuss in details in Section 5, there are infinitely many
contact3-manifolds each of which admits infinitely many distinct Stein fillings. The reason
that we restrict ourselves to the classification ofminimal symplectic fillings is that any
blow-up of a symplectic filling is another symplectic filling. A blow-up of a Stein filling,
on the other hand, cannot carry any Stein structure since theexceptional sphere in the
blow-up violates the adjunction inequality (see Section 2.4).

In an other direction, the culmination of the work in [2, 44, 63] leads to one useful
characterization of Stein fillable contact3-manifolds:
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Theorem 3.8. A contact3-manifold(Y, ξ) is Stein fillable if and only ifξ is supported by
some open book inY whose monodromy admits a factorization into a product of positive
Dehn twists.

There are, however, Stein fillable contact3-manifolds each of which carries an open book
supporting the given contact structure whose monodromy admits no positive factorization
at all (cf. [8, 90]). In particular, this shows that the characterization above does not hold
for everyopen book supporting the given contact structure.

Nevertheless, Stein/symplectic fillings of contact3-manifolds supported byplanar open
books are understood much better due to the recent work of Wendl. To describe his work,
we give a few basic necessary definitions here and refer to [92] for the details. In our
discussion leading to Theorem 2.8 in Section 2.3, we gave a short proof of the fact that an
allowable Lefschetz fibration overD2 admits a Stein structure, but we did not pay attention
to how the Stein structure, or more precisely the exact symplectic form, restricts to the
fibers of the Lefschetz fibration. However, there is a long history of the study of symplectic
Lefschetz fibrations in the literature.

Suppose thatΣ is a closed, connected and oriented surface, andf : X → Σ is a smooth
fibre bundle whose fibers are also closed, connected and oriented surfaces. Thurston [86]
showed thatX admits a symplectic formω such that all fibers are symplectic submanifolds
of (X,ω), provided that the homology class of the fibre is non-zero inH2(X,R). Moreover,
the space of symplectic forms onX having this property is connected. This result of
Thurston was generalized to Lefschetz fibrations by Gompf.

Theorem 3.9 (Gompf [46]). Suppose thatf : X4 → Σ2 is a Lefschetz fibration such
that homology class of the fiber is non-zero inH2(X,R), where bothX andΣ are closed,
connected and oriented manifolds. Then the space of symplectic forms onX that are
supported byf is nonempty and connected.

We say that a symplectic formω onX is supportedby f : X → Σ if every fiber is a
symplectic submanifold at its smooth points, and in a neighborhood of each critical point,
ω tames some almost complex structureJ that preserves the tangent spaces of the fibers.

In [92], Wendl defines abordered Lefschetz fibrationf : E → D2 with a supported sym-
plectic formωE such that, in addition to the conditions above,ωE = dλ in a neighborhood
of ∂E for some Giroux formλ. A symplectic filling(W,ω) of a contact 3-manifold(Y, ξ)
is said to admit a symplectic Lefschetz fibration overD2 if there exists a bordered Lefschetz
fibrationf : E → D2 with a supported symplectic formωE such that, after smoothing the
corners on∂E, (E, ωE) is symplectomorphic to(W,ω).

Theorem 3.10(Wendl [91]). (see also[92, Thm. 5.6]) Suppose that(W,ω) is a strong
symplectic filling of a contact3-manifold(Y, ξ) which is supported by a planar open book
f : Y \B → S1. Then(W,ω) admits a symplectic Lefschetz fibration overD2, such that the
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induced open book at the boundary is isotopic tof : Y \B → S1. Moreover, the Lefschetz
fibration is allowable if and only if(W,ω) is minimal.

In this case, the Lefschetz fibration determines a supporting open book on(Y, ξ) uniquely
up to isotopy. Moreover, the isotopy class of the Lefschetz fibration produced on(W,ω)
depends only on the deformation class of the symplectic structure. The punch line is that
the problem of classifying symplectic fillings up to symplectic deformation reduces to the
problem of classifying Lefschetz fibrations that fill a givenplanar open book supporting
the contact structure.

Definition 3.11. A contact3-manifold(Y, ξ) is said to be planar ifY admits a planar open
book supportingξ.

The following generalization of Theorem 3.10 was proved in [70]:

Theorem 3.12(Niederkrüger-Wendl [70]). If (Y, ξ) is a planar contact3-manifold, then
every weak symplectic filling(W,ω) of (Y, ξ) is symplectically deformation equivalent to a
blow up of a Stein filling of(Y, ξ).

4. CONTACT 3-MANIFOLDS ADMITTING ONLY FINITELY MANY FILLINGS

In this section we would like to list some examples of oriented closed3-manifolds for
which theBasic Problemstated in Section 3 has been completely solved.

4.1. The standard contact structure onS3. Letωst := dx1 ∧ dy1 + dx2 ∧ dy2 denote the
standard symplectic2-form onR4 in the coordinates(x1, y1, x2, y2). Let

λst :=
1

2
x1dy1 − y1dx1 + x2dy2 − y2dx2

be the standard primitive ofωst. The standard contact structure onS3 ⊂ R
4 is defined as

ξst = kerαst, whereαst = λst|S3. The vector field

v = x1
∂

∂x1

+ y1
∂

∂y1

+ x2
∂

∂x2

+ y2
∂

∂y2

is a Liouville vector field forωst which is transverse toS3 (pointing outward), which shows
that(D4, ωst) is a strong symplectic filling of the standard tight contact3-sphere(S3, ξst).
In other words,(S3, ξst) is the convex boundary of(D4, ωst).

Consider the standard complex structureJst onR4 given by

Jst(
∂

∂xj

) =
∂

∂yj

andJst(
∂

∂yj

) = − ∂

∂xj

for j = 1, 2.

Note thatJst is just the complex multiplication byi whenR4 is identified withC2. Let
φ : R4 → R be defined by

φ(x1, y1, x2, y2) = x2
1 + y2

1 + x2
2 + y2

2.
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Thenφ is an exhaustingJst-convex function onR4 so thatS3 is regular a level set. It is

easy to check thatαst = −1

2
(dφ◦Jst)|S3. This shows thatD4 equipped with the restriction

of standard complex structureJst on R4 is a Stein filling of(S3, ξst). There is yet another
description ofξst as thecomplex tangencies, i.e.,

ξ = TS3 ∩ Jst(TS
3).

We should also point out, in surgery theory,(S3, ξst) is commonly defined as the extension
of the standard contact structure onR3 which is given as the kernel of

dz + x dy − y dx = dz + r2dθ

in the coordinates(x, y, z) or using polar coordinates(r, θ) for the xy-plane. In other
words, for anyp ∈ S3, (S3 \ {p}, ξst|S3\{p}) is contactomorphic to the standard contact
R3. Note that the standard contact structure onR3 can also be defined asker(dz+ x dy) or
ker(dz − y dx), up to isomorphism.

The following result is due to Gromov [48] (see also [24, Theorem 5.1], [65, Theorem
1.7], [19, Theorem 16.6]).

Theorem 4.1.Any weak symplectic filling of(S3, ξst) is symplectically deformation equiv-
alent to a blow-up of(D4, ωst).

This result can be obtained [92, Corollary 5.7] as an easy corollary to Theorem 3.10
since(S3, ξst) admits a planar open book whose page is an annulus and whose monodromy
is a single positive Dehn twist along the core circle. This monodromy admits a unique
positive factorization which proves Theorem 4.1.

4.2. The standard contact structure onS1×S2. We define the standard contact structure
ξst onS1×S2 as the contact structure supported by the standard open bookgiven as follows:
The page is the annulus and the monodromy is the identity. Note that(S1 × S2, ξst) is
Stein fillable by Theorem 3.8 and it is well-known (cf. [40, Section 4.10]) thatS1 × S2

admits a unique tight contact structure, up to isotopy. Any Stein filling of (S1 × S2, ξst) is
deformation equivalent to the canonical Stein structure onS1 ×D3 ∼= D4 ∪ 1-handle given
by Theorem 2.4. The following theorem was implicit in [23] (see also [41]).

Theorem 4.2.Any weak symplectic filling of(S1 × S2, ξst) is diffeomorphic toS1 ×D3.

Since(S1 × S2, ξst) is planar, Wendl’s Theorem 3.10 can be applied here to yield the
next result as an immediate consequence:

Theorem 4.3. [92] The strong symplectic filling of(S1×S2, ξst) is unique up to symplectic
deformation equivalence and blow-up.
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In fact, using Theorem 3.12, “strong” can be replaced by “weak” in Theorem 4.3. Note
that Theorem 3.1 does not apply here.

Remark. [19, Theorem 16.9] The standard contact(#mS
1 × S2, ξst) is defined as the

contact connected sum ofm copies of(S1 ×S2, ξst). Any Stein filling of(#mS
1 ×S2, ξst)

is deformation equivalent to the canonical Stein structureon♮mS1×D3 ∼= D4∪k 1-handles.

4.3. The 3-torus T 3. Using coordinates(x1, x2, y1, y2) for the cotangent bundleT ∗T 2 ∼=
T 2 × R

2, the tautological1-form on the unit cotangent bundleS∗T 2 can be given asα0 =
x1dy1 + x2dy2. If we identify the3-torusT 3 asT 2 × S1 = T 2 × ∂D2 ∼= S∗T 2, and replace
the (y1, y2) coordinates ofR2 with (cos(2πθ), sin(2πθ)) on the circle∂D2 ⊂ R2, we see
that

ξ0 = ker(cos(2πθ)dx1 + sin(2πθ)dx2)

is a contact structure onT 3 = T 2 × S1 in the coordinates(x1, x2, θ).
Moreover,(T 2 ×D2, ω0) is a strong symplectic filling of(T 3, ξ0), where

ω0 = dx1 ∧ dy1 + dx2 ∧ dy2

denotes the canonical symplectic form onT ∗T 2. In fact, T 2 × D2 is a Stein filling of
(T 3, ξ0), since for some appropriateJ , we haveω0 = −ddCφ for the exhaustingJ-convex
functionφ(x1, x2, y2, y2) = 1

2
(y2

1 + y2
2) (cf. [91]).

It was shown by Eliashberg [26] thatξ0 is the unique strongly fillable contact structure
onT 3. Note that a Stein structure on the trivial disk bundleT 2 ×D2 which fills the contact
3-manifold(T 3, ξ0) can also be described by the Legendrian surgery diagram in [46, page
430].

In [82], using gauge theory Stipsicz showed that any Stein filling of (T 3, ξ0) is homeo-
morphictoT 2×D2. This result was improved by Wendl [91], who proved that any minimal
strong symplectic filling of(T 3, ξ0) is symplectic deformation equivalent to a star-shaped
domain in(T ∗T 2, ω0). In particular,

Theorem 4.4(Wendl [91]). Every minimal strong filling ofT 3 is diffeomorphic toT 2×D2.

We do not need to specify any contact structure in Theorem 4.4, sinceT 3 carries a unique
strongly symplectically fillable contact structure, although it carries infinitely many weakly
symplectically fillable contact structuresξn = kerαn, for n ∈ N, where

αn = cos(2π(n+ 1)θ)dx1 + sin(2π(n+ 1)θ)dx2.

These contact structures are distinguished by their Girouxtorsion [43].
The contact3-manifold (T 3, ξ0) is not planar since according to [33, Thm. 4.1], any

symplectic filling(W,ω) of a planar contact3-manifold has the property thatb+2 (W ) =
b02(W ) = 0, butb02(T

2 ×D2) 6= 0. Thus Theorems 3.10 and 3.12 are not applicable.
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FIGURE 3. Torus with3-holes

As it was shown in [89], the contact structure(T 3, ξ0) is supported by an open book
whose page is a torus with3-holes and whose monodromy is given (see Figure 3) as

ψ = D−3(α1)D
−3(α2)D

−3(α3)D(δ1)D(δ2)D(δ3) ∈ Γ1,3

Remark. This open book onT 3 can also be obtained as follows: First observe thatT 3 is
diffeomorphic to the plumbing of circle bundles over the sphere according to thecircular
graph with associated Euler numbers{1, 2, 2, 1, 2, 2, 1, 2, 2} and then apply the algorithm
in [31].

Note thatψ can be expressed as a product of three positive Dehn twists asfollows: The
relation

D(δ1)D(δ2)D(δ3) =
(
D(α1)D(α2)D(α3)D(β)

)3 ∈ Γ1,3

is well-known [54]. By settingϕ = D(α1)D(α2)D(α3) we have

ψ = ϕ−3
(
ϕD(β)

)3
= ϕ−2D(β)ϕ2ϕ−1D(β)ϕD(β) = D(ϕ−2(β))D(ϕ−1(β))D(β)

Hence we conclude that there is an allowable Lefschetz fibrationT 2×D2 → D2 with three
singular fibers whose monodromy factorization is given asD(ϕ−2(β))D(ϕ−1(β))D(β).

4.4. Lens spaces.The standard tight contact structureξst on S3, is invariant under the
action of the group

Gp,q = {
(
η 0
0 ηq

)
| ηp = 1} ⊂ U(2)
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wherep, q ∈ Z. It follows that whenp > q ≥ 1 andp, q are coprime,ξst descends to a
contact structureξst on the lens spaceL(p, q) = S3/Gp,q. Note thatξst is universally tight
by definition, since its universal cover is(S3, ξst).

McDuff [65] showed that ifp 6= 4, any minimal weak symplectic filling of(L(p, 1), ξst)
is diffeomorphic to the disk bundle overS2 with Euler number−p, while (L(4, 1), ξst) has
two distinct symplectic (in fact, Stein) fillings. In Section 6.1, we present these fillings as
allowable Lefschetz fibrations overD2 and discuss their relevance to rational blowdowns.

Lisca [58] extended McDuff’s results to all lens spaces giving a complete diffeomor-
phism classification of minimal weak symplectic fillings of(L(p, q), ξst). In particular, he
showed that

• each diffeomorphism class has a Stein representative and
• for all p ≥ 2, the contact lens space(L(p2, p−1), ξst) has two distinct Stein fillings.

(See Section 6.2 for further details.)

The strategy of proof in the above classification results dueto McDuff and Lisca can
be outlined as follows: Suppose(W,ωW ) is minimal strong symplectic filling of a given
contact3-manifold(Y, ξ). By finding a convenient symplectic cap—concavefilling (Z, ωZ)

of (Y, ξ)—one can embed(W,ωW ) into a closed symplectic4-manifold X̃ = W ∪Y Z,
where the symplectic form oñX is obtained by an appropriate gluing [32]. Suppose that
the capZ contains a sphereS of self-intersection+1, and hencẽX contains such a sphere.
Then McDuff’s Theorem 4.5 implies that̃X is a rational symplectic 4-manifold.

Theorem 4.5(McDuff [65]). Let (X,ω) be a minimal closed symplectic4-manifold where
S is an embedded sphere of self-intersectionS · S = 1. Then there exists a symplectomor-
phism from(X,ω) to (CP 2, ωstd) that takesS to a complex line inCP 2, whereωstd denotes
the usual K̈ahler form onCP 2.

In particular, after blowing down a finite collection of symplectic (−1)-curves away from
S, X̃ becomes the complex projective plane withS a complex projective line in it. What is
outlined so far gives restrictions on the symplectic topology of the possible filling(W,ωW ).
The intricate part of this method is to figure out different possible configurations of(−1)-
curves which can be blowdown to obtain a copy ofCP

2 such thatS ∼= CP
1 ⊂ CP

2. We
refer the reader to [15] for a more detailed exposition of this method.

We now turn our attention to the virtually overtwisted contact structures onL(p, 1). Ac-
cording to Honda’s classification [49], there arep−1 tight contact structuresξ1, ξ2, . . . , ξp−1

onL(p, 1), distinct up to isotopy, whereξk is the result of Legendrian surgery on the stabi-
lized unknot in(S3, ξst) with k cusps on the left andp− k cusps on the right. The union of
D4 and the2-handle corresponding to the surgery yields a Stein filling of (L(p, 1), ξk). Out
of thep − 1 tight contact structures onL(p, 1) listed above, onlyξ1 andξp are universally
tight (both isomorphic toξst), and the rest are virtually overtwisted.
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Theorem 4.6(Plamenevskaya & Van Horn-Morris [78]). Every virtually overtwisted con-
tact structure onL(p, 1) has a unique Stein filling (up to symplectic deformation), which is
also its unique weak symplectic filling (up to symplectic deformation and blow-up).

The strategy that Plamenevskaya and Van Horn-Morris used toprove Theorem 4.6 is
very different from the one that we outlined above for classifying fillings of the standard
structureξst. It is easy to see that every tight contact structure inL(p, 1) is planar [79]. In
fact, the monodromy of some particular planar open book compatible with ξk can be de-
scribed by classical techniques (cf. [35]). By Wendl’s Theorem 3.10, every Stein filling of
(L(p, 1), ξk) is symplectic deformation equivalent to an allowable (symplectic) Lefschetz
fibration overD2 whose boundary is the given planar open book. Therefore, it suffices
to study positive factorizations of the aforementioned monodromy, to classify fillings of
(L(p, 1), ξk). In [78], Plamenevskaya and Van Horn-Morris were able to findrestrictions
on possible positive factorizations for certain simple monodromies, by means of elemen-
tary calculations in the abelianization of the mapping class group of the planar surface.
Such restrictions coupled with some deep results about the characterization of Legendrian
unknots in(S3, ξst) yielded a proof of Theorem 4.6.

Corollary 4.7. [78] For p 6= 4, every tight contact structure onL(p, 1) has a unique Stein
filling (up to symplectic deformation), which is also its unique weak symplectic filling (up
to symplectic deformation and blow-up).

Recently, Kaloti was able extend the results of Plamenevskaya and Van Horn-Morris to
other lens spaces, based on some new analysis on the positivefactorizations in the mapping
class of groups of planar surfaces, in addition to the techniques discussed above.

Theorem 4.8(Kaloti [51]). Let ξ be a contact structure on the lens spaceL(p(m + 1) +
1, (m+ 1)). If ξ is

• virtually overtwisted, thenξ has a unique Stein filling up to symplectomorphism.
• universally tight andp 6= 4, 5, . . . , (m+ 4), thenξ has a unique Stein filling up to

symplectomorphism.
• universally tight andp = 4, 5, . . . , (m+ 4), thenξ has at least two Stein fillings up

to symplectomorphism.

4.5. Circle bundles overT 2. For any positive integerk, let Yk denote the oriented circle
bundle overT 2 with Euler number−k. There are exactly two Stein fillable universally
tight contact structures onYk up to isotopy, which are isomorphic to each other [50]. Let
ξk denote this contact structure up to isomorphism. Ohta and Ono [72] classified minimal
strong symplectic fillings of(Yk, ξk) up to symplectic deformation:

• if k ≥ 10, then there is a unique minimal strong symplectic filling given by the
symplectic disk bundle over torus with Euler number−k,
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• if k ≤ 9 andk 6= 8, then there are two minimal strong symplectic fillings one of
which is given by the symplectic disk bundle over torus with Euler number−k, and

• if k = 8, then there are three minimal strong symplectic fillings oneof which is
given by the symplectic disk bundle over torus with Euler number−8.

Here we would like to present all the fillings listed above as allowable Lefschetz fibra-
tions overD2. The contact3-manifold(Yk, ξk) is supported by the open book whose page
is a torus withk holes and whose monodromyψk can be expressed as the product

D(δ1)D(δ2) · · ·D(δk),

whereδi denotes a curve parallel to theith boundary component [13]. The following can
be easily verified by drawing a smooth handlebody diagram of the corresponding Lefschetz
fibrations.

Lemma 4.9. For k ≥ 2, let fk : Dk → D
2 denote the allowable Lefschetz fibration whose

monodromy has the following factorization

ψk = D(δ1)D(δ2) · · ·D(δk) ∈ Γ1,k.

ThenDk is diffeomorphic to the oriented disk bundle over torus withEuler number−k.

Note that the “factorization”ψ1 = D(δ1) does not yield an allowable Lefschetz fibration
since the boundary parallel curveδ1 is homologically trivial on the fiber (torus with one
hole). Nevertheless, the total space of this Lefschetz fibration with one singular fiber is
diffeomorphic to the disk-bundle over torus with Euler number−1, which is a Stein filling
of (Y1, ξ1). To find a possibly higher genus allowable Lefschetz fibration overD2 on this
disk-bundle, one could apply the algorithm in [2] to the Stein handlebody diagram of this
bundle depicted in [13, Figure 1].

As described in [54], for1 ≤ k ≤ 9, ψk ∈ Γ1,k has a factorization into12 posi-
tive Dehn twists along homologically nontrivial simple closed curves on a torus withk-
holes. The total spaceAk of the corresponding allowable Lefschetz fibration overD2 is not
even homotopy equivalent toDk since they have different Euler characteristics. HenceAk

equipped with its Stein structure given by Theorem 2.8 is a second Stein filling of(Yk, ξk)
for 1 ≤ k ≤ 9.

Now we turn to the casek = 8: First of all, note that the monodromy of the allowable
Lefschetz fibration overD2 onA8 is given [54, page 84] by the positive factorization

ψ8 = D(α4)D(α5)D(β1)D(σ3)D(σ6)D(α2)D(β6)D(σ4)D(σ7)D(α7)D(β4)D(σ5) ∈ Γ1,8

whereβi = (D(αi))(β) for i = 1, 4, 6, (see Figure 4).
By Lemma 2.5,H1(A8; Z) is generated by{[α1], [β], [δ1], . . . , [δ7]} modulo the subgroup

〈[α2], [α4], [α5], [α7], [β1], [β4], [β6], [σ3], [σ4], [σ5], [σ6], [σ7]〉.
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FIGURE 4. Eight-holed torus with boundary{δ1, . . . , δ8}

Using the Picard-Lefschetz formula (cf. [46, page 295])[βj ] = [β] + [αj ], for j = 1, 4, 6,
and the fact that[δi+1] = [αi+1] − [αi], for 1 ≤ i ≤ 7, we easily see that thatH1(A8; Z) is
trivial.

There is another positive factorization ofψ8 [84, Proposition 2.6] given as:

ψ8 = D(α5)D(α7)D(β6)D(β2)D(σ2)D(σ1)D(α1)D(α3)D(β2)D(β6)D(σ4)D(σ7) ∈ Γ1,8

whereβi = (D−1(αi))(β), for i = 2, 6 (see Figure 5). LetB8 denote the total space of the
allowable Lefschetz fibration overD2 with monodromy factorization as above.

ThenH1(B8; Z) is generated by{[α1], [β], [δ1], . . . , [δ7]} modulo the relations induced
by the vanishing cycles:

[α1] = [α3] = [α5] = [α7] = [β2] = [β2] = [β6] = [β6] = 0;

[σ1] = [δ4]+[α2] = 0; [σ2] = [δ5]+[α2] = 0; [σ4] = [δ1]+[α6] = 0; [σ7] = [δ8]+[α6] = 0.

By the Picard-Lefschetz formula, we have

[β2] = [β] + [α2]; [β2] = [β] − [α2]; [β6] = [β] + [α6]; [β6] = [β] − [α6].

It follows thatH1(B8; Z) is isomorphic toZ2. We conclude thatA8 is not homeomorphic
toB8, albeitχ(A8) = χ(B8).

Remark. A fruitful source of Stein fillable contact3-manifolds is given by the links of
isolated complex surface singularities. The reader is advised to turn to the excellent lec-
ture notes [67] for an introduction to singularity theory and to the survey article [68] to
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FIGURE 5. Eight-holed torus with boundary{δ1, . . . , δ8}

learn in depth, the connection between the analytical aspects of singularity theory and
low-dimensional topology. In particular, we will use the notions of simple, simple ellip-
tic, cyclic quotientandquotientsingularities,resolutions, smoothingsand Milnor fibers
without defining them in this article and refer to the sourcesabove.

Let (X, 0) ⊂ (CN , 0) be an isolated complex surface singularity. Then a sufficiently
small sphereS2N−1

ǫ ⊂ CN centered at the origin intersectsX transversely, cutting out a
closed, oriented and smooth3-dimensional manifoldM = X ∩ S2N−1

ǫ which is called as
the link of the singularity. The oriented plane distribution ξcan := TM ∩ JTM , where
J is the complex structure onX, is called thecanonicalcontact structure onM , which is
uniquely determined up to isomorphism [18]. It turns out [55] that the canonical contact
structure is universally tight, i.e., its universal cover is tight.

Note that a regular neighborhood of the exceptional divisorin a minimal resolution of the
surface singularity provides a holomorphic filling ofξcan. This filling cannot be Stein since
it contains compact complex curves as its complex analytic submanifolds (see Section 1.1).
Nevertheless,ξcan is Stein fillable (hence tight) since the aforementioned holomorphic fill-
ing can be deformed to be a blow-up of a Stein filling without changing the contact structure
on the boundary [16]. Moreover, if the singularity admits a smoothing, each Milnor fiber
of any of its smoothings also provides a Stein filling ofξcan.

For anyk ∈ Z+, let (Xk, 0) denote the simple elliptic singularity of degreek, whose
minimal resolution consists of a single elliptic curve of self-intersection number−k. The
link of the singularity(Xk, 0) is orientation preserving diffeomorphic to the circle bundle
Yk and the canonical contact structure onYk is given byξk, up to isomorphism. Therefore,
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A8, B8 andD8 represent the three distinct Stein fillings of(Y8, ξ8) in Ohta and Ono’s clas-
sification, whereD8 is the minimal resolution of the singularity whileA8, B8 correspond
to the Milnor fibers of two distinct smoothings.

4.6. Some hyperbolic3-manifolds.

Theorem 4.10(Kaloti-Li [52]) . There are infinitely many contact hyperbolic3-manifolds
each of which admits a unique Stein filling, up to symplectic deformation.

For the proof, they perform surgery on a sufficiently stabilized Legendrian twist knot in
(S3, ξst); express the monodromy factorization of some planar open book supporting the
resulting hyperbolic contact3-manifold; apply Wendl’s Theorem 3.10 and find restrictions
on possible positive factorizations of the monodromy by intricate analysis in the mapping
class group of the planar surface at hand.

4.7. Some graph manifolds.By a graph manifold, we mean an oriented3-manifold ob-
tained by plumbing oriented circle bundles over closed oriented surfaces according to a
graph. LetW denote the symplectic4-manifold with convex boundary obtained by plumb-
ing oriented disk bundles over the sphere according to the negativeE8 diagram. The
boundary∂W is diffeomorphic to the Poincaré homology3-sphereP , and henceP car-
ries a strongly symplectically fillable contact structureξP . This contact structure can also
be described by the Legendrian surgery on(S3, ξst) along the link depicted in Figure 6. Ac-
cording to Theorem 2.4, a Stein filling of(P, ξP ) is obtained by attaching2-handles to the
standard Stein0-handleD4 along the Legendrian link whose front projection is depicted
in Figure 6. Ohta and Ono [73] proved thatP admits a unique weak symplectic filling up
to symplectic deformation and blow-up. As a matter of fact,ξP is the unique tight contact
structure onP , up to isotopy.

FIGURE 6. Legendrian link in(S3, ξst)

The contact3-manifold(P, ξP ) is not planar [33, Thm. 4.1], since the intersection form
of the strong symplectic filling above is non-diagonalizable. The contact structureξP is
supported by the open book whose page is torus with one hole and whose monodromy
is given by(D(α)D(β))5 ∈ Γ1,1, whereα andβ are the standard representatives of the
first homology group of the page. LetWP → D2 denote the allowable Lefschetz fibration
whose monodromy factorization is given as(D(α)D(β))5. According to Theorem 2.8,WP
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can be endowed with a Stein structure, so that it becomes a Stein filling of (P, ξP ).

Remark. The Poincaré homology3-sphereP is orientation preserving diffeomorphic to
the link of a simple singularity, andξP is the canonical contact structure on this link. More-
over,WP is diffeomorphic to the Milnor fiber which, in turn, is diffeomorphic to the mini-
mal resolution given by the negativeE8-plumbingW . In fact, Ohta and Ono [73] showed
that the link of a simple (or ADE) singularity, equipped withits canonical contact struc-
ture admits a unique weak symplectic filling up to symplecticdeformation and blow-up.
In addition, Bhupal and Ono [12] classified the strong symplectic fillings of the link of a
quotient surface singularity.

4.8. Some Seifert fibered spaces.In [81], Starkston gave finiteness results and some clas-
sifications up to diffeomorphism of minimal strong symplectic fillings of Seifert fibered
spaces overS2 satisfying certain conditions, with a fixed natural contactstructure.

5. CONTACT 3-MANIFOLDS ADMITTING INFINITELY MANY FILLINGS

In this section, we collect some examples of contact3-manifolds in the literature each of
which has been shown to admit infinitely manydistinctStein fillings. We will clarify what
we mean by distinct for each of the examples we consider below.

Definition 5.1. Let Yg,m denote the oriented3-manifold which is the boundary of the4-
manifold obtained by plumbing of the disk bundle over a genusg surface with Euler num-
ber 0 and the disk bundle over a sphere with Euler number2m. The3-manifoldYg,m

admits an open book whose page is a genusg-surface with connected boundary and whose
monodromy isD2m(γ), whereγ is a boundary parallel curve. Letξg,m denote the contact
structure supported by this open book.

5.1. Infinitely many pairwise non-homeomorphic Stein fillings. The first example of a
contact three manifold which admits infinitely many distinct Stein fillings was discovered
by the author and Stipsicz:

Theorem 5.2. [74] For each odd integerg ≥ 3, the contact3-manifold(Yg,1, ξg,1) admits
infinitely many pairwise non-homeomorphic Stein fillings.

In the following, we outline the construction of these fillings, which is based on the
following result:

Proposition 5.3. [4] Let f : X → S2 be an allowable Lefschetz fibration that admits a
section. LetU denote the interior of a regular neighborhood of the union ofthis section
and a regular fiber off , and letW = X \ U . Thenf |W : W → D

2 is an allowable
Lefschetz fibration and henceW carries a Stein structure such that the induced contact
structure on∂W is supported by the induced open book.
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For g = 2h + 1 ≥ 3, consider the allowable Lefschetz fibrationfg : Xg → S2 whose
fiber is a closed oriented surface of genusg and whose monodromy factorization is given
by the word [53]

(
D(β0)D(β1) · · ·D(βg)D

2(α)D2(β)
)2

= 1 ∈ Γg

where these curves are depicted in Figure 7.

β0

β1β2β3

βg

α

β

FIGURE 7. Vanishing cycles of the genusg Lefschetz fibrationfg : Xg → S2.

Remark. The Lefschetz fibrationfg : Xg → S
2 admits a sphere section of self-intersection

−1, which is equivalent to the fact that
(
D(β0)D(β1) · · ·D(βg)D

2(α)D2(β)
)2

= D(δ) ∈ Γg,1

whereδ is a boundary parallel curve on a genusg surface with one boundary component.

Note that the total spaceXg is diffeomorphic toΣh × S2#8CP 2, whereΣh denotes a
closed oriented surface of genush = 1

2
(g − 1). In particular, the first homology group

H1(Xg; Z) contains no torsion.
Let fg(n) : Xg(n) → S2 denote thetwistedfiber sum of two copies of the Lefschetz

fibrationfg : Xg → S2, where the gluing diffeomorphism, i.e., a self-diffeomorphism of a
generic fiber, is ann-fold power of a right-handed Dehn twist along a certain homologically
nontrivial curve on the fiber. We observe that

• H1(Xg(n); Z) ∼= Zg−2 ⊕ Zn, and
• fg(n) : Xg(n) → S2 admits a sphere section with self-intersection number−2.

The crux of the matter is that althoughH1(Xg; Z) has no torsion,H1(Xg(n); Z) has
torsionZn depending on the power of the Dehn twist we use for the fiber sum. LetUg(n)
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denote the interior of a regular neighborhood of the union ofthe(−2)-sphere section above
and a regular fiber offg(n). It is easy to see that, for each positive integern, the boundary
∂Ug(n) is diffeomorphic toYg,1 with theoppositeorientation. LetWg(n) := Xg(n)\Ug(n).
By Proposition 5.3, for fixed oddg ≥ 3, the set

{Wg(n) | n ∈ Z
+}

gives an infinite family of pairwise non-homeomorphic Steinfillings of the contact3-
manifold(Yg,1, ξg,1), since one can see that

H1(Wg(n); Z) ∼= H1(Xg(n); Z) ∼= Z
g−2 ⊕ Zn.

Remark. From the mapping class group point of view, the infinite set ofpairwise non-
homeomorphic fillings above owes its existence to the infinitely many distinct factoriza-
tions ofD2(δ) ∈ Γg,1 as

(
D(β0) · · ·D(βg)D

2(α)D2(β)
)2(

D(ϕn(β0)) · · ·D(ϕn(βg))D
2(ϕn(α))D2(ϕn(β))

)2

whereδ denotes a boundary parallel curve andϕn denotesDn(γ) for some homologically
nontrivial curveγ on the genusg surface with one boundary component.

5.2. Infinitely many exotic Stein fillings. The first example of a contact3-manifold which
admits infinitely manyexotic(i.e., homeomorphic but pairwise non-diffeomorphic) simply-
connected Stein fillings was constructed in [6].

Theorem 5.4. [6] For each integerg > 4 andm ≥ 1, the contact3-manifold(Yg,m, ξg,m)
admits infinitely many exotic Stein fillings.

The essential ingredient in the proof of Theorem 5.4 is the Fintushel-Stern knot surgery
[38] along a homologically essential torus using an infinitefamily of fibered knots inS3 of
fixed genus with distinct Alexander polynomials. The infinite family of Stein fillings are
obtained—as in the previous section—by removing the interior of a regular neighborhood
of the union of a section and a regular fiber of a certain allowable Lefschetz fibration over
S2 after applying knot surgery along a torusT so that

• T is disjoint from the section, and
• T intersects each fiber of the Lefschetz fibration twice.

The Stein fillings are pairwise non-diffeomorphic since before the removal of the union
of the section and the regular fiber, the closed4-manifolds are already pairwise non-
diffeomorphic. This is because they have different Seiberg-Witten invariants based on the
choice of the infinite family of fibered knots with distinct Alexander polynomials. The fact
that these fillings are all homeomorphic is essentially guaranteed by Freedman’s Theorem.

Recently, Akhmedov and the author were able to generalize Theorem 5.4 as follows:
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Theorem 5.5. [7] For any finitely presentable groupG, there exists a contact3-manifold
which admits infinitely many exotic Stein fillings such that the fundamental group of each
filling is isomorphic toG.

Remark. The contact3-manifolds in Theorem 5.5 are the links of some isolated complex
surface singularities, equipped with their canonical contact structures.

Moreover, Akbulut and Yasui [5] showed that there exists an infinite family of contact
3-manifolds each of which admits infinitely many simply connected exotic Stein fillings
with b2 = 2. Their approach to construct exotic Stein fillings is drastically different from
what we outlined above for all the other previous constructions based on Proposition 5.3.
The infinite family of exotic Stein fillings are obtained by ap-log transform (p ≥ 1) along
a single torus with trivial normal bundle in a certain4-manifold with boundary. The Stein
structures are described by Legendrian handle diagrams—asopposed to using Lefschetz
fibrations—and the smooth structures on the fillings are distinguished by a clever use of
the adjunction inequality (see Section 2.4).

5.3. Stein fillings with arbitrarily large Euler characteristic s. Let (Y, ξ) be a closed
contact3-manifold and let

C(Y, ξ) = {χ(W ), σ(W ) | (W,J) is a Stein filling of(Y, ξ)}
whereχ denotes the Euler characteristic andσ denotes the signature. It was conjectured
[74] that for every contact3-manifold (Y, ξ), the setC(Y, ξ) is finite. The finiteness of
C(Y, ξ) for a planar contact3-manifold (Y, ξ) follows from [83, Corollary 1.5] since any
Stein filling of a planar contact3-manifold must be negative definite [33]. Therefore the
conjecture holds true for planar contact3-manifolds—as observed by Plamenevskaya [77],
and Kaloti [51].

The conjecture above was disproved recently by Baykur and Van Horn-Morris [9, 10]
who showed that there are vast families of contact3-manifolds each member of which
admits infinitely many Stein fillings with arbitrarily largeEuler characteristics and also
unbounded signatures. The main ingredient in their proof isthe following result which is
of interest on its own:

Theorem 5.6(Baykur & Van Horn-Morris [10]). For any integerg ≥ 8, the boundary
multi-twistD(δ1)D(δ2) ∈ Γg,2 admits arbitrarily long factorizations of positive Dehn twists
along non-separating curves.

In [20], this result was improved to cover anyg ≥ 3. By capping off one boundary
component, it immediately follows that the boundary twistD(δ) ∈ Γg,1 admits arbitrarily
long positive factorizations for anyg ≥ 3. This is not true forg = 1, 2. In fact, forg = 1,
the boundary multi-twistD(δ1)D(δ2) · · ·D(δn) ∈ Γ1,n can be expressed as a product of
positive Dehn twists about nonseparating simple closed curves if and only ifn ≤ 9 (cf.
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[54]). Moreover, in the casen ≤ 9, the number of Dehn twists in any such positive fac-
torization must be12 for homological reasons. The fact thatD(δ) ∈ Γ2,1 does not admit
arbitrarily long positive factorizations was proved by Smith [80, Theorem 1.4]. In contrast,
D2(δ) ∈ Γ2,1 admits arbitrarily long positive factorizations [20].

In the following we describe an element (different from a boundary multi-twist) inΓ2,1

which has arbitrarily long factorizations of positive Dehntwists (cf. [20]). The existence of
such an element indeed provides a counterexample to the aforementioned conjecture. We
refer to Figure 8 for the curves that appear in the following text. It is well-known that

α1
α2 α3 α4

β

γ

FIGURE 8. A genus two surface with connected boundary

D(β)D(γ) =
(
D(α1)D(α2)D(α3)

)4

and by applying braid relations we obtain

D(β)D(γ) =
(
D(α1)D(α2)D(α3)

)4

=
(
D(α1)D(α2)D(α3)

)2
D(α1)D(α2)D(α3)D(α1)D(α2)D(α3)

=
(
D(α1)D(α2)D(α3)

)2
D(α1)D(α2)D(α1)D(α3)D(α2)D(α3)

=
(
D(α1)D(α2)D(α3)

)2
D(α2)D(α1)D(α2)D(α3)D(α2)D(α3)

=
(
D(α1)D(α2)D(α3)

)2
D(α2)D(α1)D(α3)D(α2)D(α3)D(α3).

Now we define

T := D(β)D(γ)D−1(α3)D
−1(α3) =

(
D(α1)D(α2)D(α3)

)2
D(α2)D(α1)D(α3)D(α2).

By taking them-th power for anym, we have

Tm = Dm(β)D−m(α3)D
m(γ)D−m(α3).

We follow [20] to construct the desired element with arbitrarily long positive factorizations,
although similar arguments appeared in [11] and also [10, Lemma 3.4]. Let

ϕ = D(α4)D(α3)D(α2)D(α1)D(α1)D(α2)D(α3)D(α4)D(α4)D(β)D(α3)D(α4)
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It can be shown by a direct calculation thatϕ(α3) = γ andϕ(β) = α3. Therefore

Tm = Dm(β)D−m(α3)D
m(γ)D−m(α3)

= Dm(β)D−m(α3)D
m(ϕ(α3))D

−m(ϕ(β))

= Dm(β)D−m(α3)D
mϕDm(α3)ϕ

−1ϕD−m(β)ϕ−1

= Dm(β)D−m(α3)D
mϕDm(α3)D

−m(β)ϕ−1

= [Dm(β)D−m(α3), ϕ]

where brackets in the last line denote the commutator. Hence

ϕ = ϕD−m(β)Dm(α3)T
mD−m(γ)Dm(α3)

= ϕD−m(β)Dm(α3)ϕ
−1ϕTmD−m(γ)Dm(α3)

= D−m(α3)D
m(γ)ϕTmD−m(γ)Dm(α3).

Thusϕ is a conjugation ofϕTm byD−m(α3)D
m(γ). But since bothϕ andT admit positive

factorizations, the productϕTm admits a positive factorization. Therefore we conclude
thatϕ admits a factorization into12 + 10m positive Dehn twists for arbitrary non-negative
integerm.

6. MONODROMY SUBSTITUTIONS AND RATIONAL BLOWDOWNS

In this section we would like to shed some light on the classification of Stein fillings of
universally tight contact lens spaces, illustrating how some relations in the mapping class
groups come into play.

6.1. The lantern relation. Let β1, β2, β3, γ0, γ1, γ2, γ3 be the curves depicted in Figure 9
on a sphereS4 with 4-holes. The identity

D(γ0)D(γ1)D(γ2)D(γ3) = D(β1)D(β2)D(β3) ∈ Γ0,4

is known as the lantern relation. Suppose thatB andC are compact4-manifolds (with
boundary) admitting allowable Lefschetz fibrations overD2 with regular fiberS4 whose
monodromies areD(β1)D(β2)D(β3) andD(γ0)D(γ1)D(γ2)D(γ3), respectively.

A handlebody diagram of the4-manifoldC induced from its Lefschetz fibration de-
scription is depicted on the left in Figure 10. By sliding thebottom2-handle over the top
2-handles, and cancelling each1-handle against the2-handle that it is linked once, we see
thatC is diffeomorphic to the disk-bundle over the sphere with Euler number−4, whose
boundary is the lens spaceL(4, 1).

By Theorem 2.8,C admits a Stein structure such that contact structureξ∂C on the bound-
ary is supported by the the open book with pageS4 and monodromy

D(γ0)D(γ1)D(γ2)D(γ3).
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β1

β2 β3

γ0

γ1 γ2
γ3

FIGURE 9. SphereS4 with 4-holes

−1 −1 −1

−1

−4

∼=

FIGURE 10. The handlebody diagram ofC

According to [49],L(4, 1) has three distinct tight contact structures up to isotopy, all of
which are Stein fillable (cf. Figure 11).

−4

−1

−1

−1

FIGURE 11. Legendrian surgery diagrams of three distinct tight contact
structures onL(4, 1)
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Lemma 6.1. The contact3-manifold(∂C, ξ∂C) is isomorphic to(L(4, 1), ξst).

Proof. The middle diagram in Figure 11 corresponds to a virtually overtwisted contact
structure by [45, Proposition 5.1] and therefore it cannot be the standard oneξst, which
is universally tight. The first and the last contact structures are in fact isomorphic since
they admit isomorphic supporting open books —with page a disk with three holes and
monodromy the product of one positive Dehn twist along each boundary component. This
last observation is simply an application of [33, Lemma 3.3]. We have the desired result
sinceξ∂C is the contact structure compatible with this open book by our definition ofC. �

∼=

−1

−1

−1

+1

+2

FIGURE 12. The handlebody diagram ofB

The handlebody diagram ofB given by its Lefschetz fibration description is depicted on
the left in Figure 12. One can verify thatB is diffeomorphic to the manifold on the right by
handleslides and cancellations. By the lantern relation, the induced open books on∂B and
∂C are isomorphic. In particular, not only∂B is diffeomorphic to∂C, but also the induced
contact structures are isomorphic as well. Thus, by Lemma 6.1, we have

(∂B, ξ∂B) ∼= (∂C, ξ∂C) ∼= (L(4, 1), ξst).

It is clear that the4-manifoldsB andC are not even homotopy equivalent since, for
example, they have different Euler characteristics. In addition, we observe thatπ1(C) = 0
andH2(C,Z) = Z, whileπ1(B) = Z2, andH2(B,Z) = 0. Since the rational homology of
B agrees with the rational homology ofD4, B is called a rational homology4-ball.

Cutting out a submanifold diffeomorphic to the disk-bundleover the sphere with Euler
number−4 from an ambient4-manifold, and gluing in a rational4-ball is a special case of
the rational blowdownoperation introduced by Fintushel and Stern [37]. In our notation,
this means replacingC byB, which results in reducing the second Betti number, with the
cost of introducing possibly more complicated fundamentalgroup.

Suppose that a monodromy factorization of some Lefschetz fibration contains a consec-
utive product of four Dehn twists around mutually disjoint curves on the regular fiber, so
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that the union of these four curves bounds a subsurface homeomorphic to a sphere with
4-holes. Removing this product of four Dehn twists from the monodromy factorization and
inserting the corresponding product of three Dehn twists which appears on the right-hand
side of the lantern relation is called alantern substitution. It follows that the effect of a
lantern substitution in the total space of a Lefschetz fibration is a rational blowdown, which
was first observed in [29].

6.2. A generalized lantern relation: The daisy. Let Sp+2 denote a sphere with(p + 2)-
holes and letβ1, . . . , βp+1, γ0, γ1, . . . , γp+1 be the curves onSp+2 as shown in Figure 13.
The identity

Dp−1(γ0)D(γ1) · · ·D(γp+1) = D(β1) · · ·D(βp+1) ∈ Γ0,p+2

was calleddaisy relation[30].

Remark. This relation has first appeared in [78, Figure 11]. It was independently discov-
ered in [11], and subsequently used to solve other interesting problems about Stein fillings
of contact3-manifolds [9].

γ1

γk γp+1

γ0

β1

βk
βp+1

FIGURE 13. A (p+ 2)-holedsphereSp+2
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Let Cp → D2 denote the allowable Lefschetz fibration overD2 with regular fiberSp+2

whose monodromy has the following factorization

Dp−1(γ0)D(γ1) · · ·D(γp+1).

It is easy to verify thatCp is diffeomorphic to the linear plumbing of(p− 1) disk bundles
overS2 with Euler numbers−(p+2),−2, . . .,−2, respectively and that∂Cp

∼= L(p2, p−1).
Similarly,Bp → D2 denote the allowable Lefschetz fibration overD2 with regular fiber

Sp+2 whose monodromy has the following factorization

D(β1) · · ·D(βp+1).

ThenBp is diffeomorphic to the4-manifold whose handle decomposition is depicted in
Figure 14. It is a fact thatBp is a rational4-ball such that∂Bp

∼= L(p2, p− 1). Cutting out
a submanifold diffeomorphic toCp from an ambient smooth4-manifold and gluing in the
rational4-ball Bp is called rational blowdown [37]. As a consequence the rational blow-
down operation can be viewed as a monodromy substitution as well where the appropriate
relation in the mapping class group is the daisy relation.

p − 1

+p

FIGURE 14. The handlebody diagram of the rational4-ballBp

According to [49],L(p2, p− 1) hasp + 1 distinct tight contact structures up to isotopy,
all of which are Stein fillable. Using a similar argument as inthe proof of Lemma 6.1, one
can show that

(∂Bp, ξ∂Bp
) ∼= (∂Cp, ξ∂Cp

) ∼= (L(p2, p− 1), ξst).

Remark. According to [65] forp = 2 and [58] for all p ≥ 2, there are two distinct
diffeomorphism classes of the minimal symplectic fillings of (L(p2, p− 1), ξst). The com-
pact4-manifoldsBp andCp—which are not even homotopy equivalent—represent these
classes, whereCp is the minimal resolution, whileBp is the Milnor fiber of the correspond-
ing cyclic quotient singularity. (In Section 6.1, takeB2 = B andC2 = C.)

6.3. Symplectic fillings of lens spaces and rational blowdowns.We first briefly review
Lisca’s classification [58] of symplectic fillings of(L(p, q), ξst), up to diffeomorphism. For
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integers1 ≤ q < p, with (p, q) = 1, recall that the Hirzebruch-Jung continued fraction is
given by

p

q
= [a1, a2, . . . , al] = a1 −

1

a2 −
1

.. . − 1

al

, ai ≥ 2 for all 1 ≤ i ≤ l.

The lens spaceL(p, q) is orientation preserving diffeomorphic to the linear plumbing of
circle bundles of Euler numbers−a1,−a2, . . . ,−al over the sphere.

Let
p

p− q
= [b1, . . . , bk],

wherebi ≥ 2 for 1 ≤ i ≤ k. A k-tuple of nonnegative integers(n1, . . . , nk) is called
admissible if each of the denominators in the continued fraction [n1, . . . , nk] is positive. It
is easy to see that an admissiblek-tuple of nonnegative integers is either(0) or consists
only of positive integers. LetZk ⊂ Zk denote the set of admissiblek-tuples of nonnegative
integersn = (n1, . . . , nk) such that[n1, . . . , nk] = 0, and let

Zk(
p

p−q
) = {(n1, . . . , nk) ∈ Zk | 0 ≤ ni ≤ bi for i = 1, . . . , k}.

Consider the chain ofk unknots inS3 with framingsn1, n2, . . . , nk, respectively. For
anyn = (n1, . . . , nk) ∈ Zk, letN(n) denote the result of Dehn surgery on this framed link.
It is easy to see thatN(n) is diffeomorphic toS1 ×S2. Let L =

⋃k

i=1 Li denote the framed
link in N(n), shown in Figure 15 in the complement of the chain ofk unknots, whereLi

hasbi − ni components.

n1 n2 nk−1 nk

b1 − n1 b2 − n2 bk−1 − nk−1 bk − nk

−1−1 −1 −1−1−1 −1−1 −1 −1−1 −1

FIGURE 15. Lisca’s description of the fillingW(p,q)(n)

The4-manifoldWp,q(n) with boundaryL(p, q) is obtained by attaching2-handles toS1×
D3 along the framed linkϕ(L) ⊂ S1 ×S2 for some diffeomorphismϕ : N(n) → S1 ×S2.
Note that this description is independent of the choice ofϕ since any self-diffeomorphism
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of S1 × S2 extends toS1 ×D3. According to Lisca, any symplectic filling of(L(p, q), ξst)
is orientation-preserving diffeomorphic to a blowup ofWp,q(n) for somen ∈ Zk(

p

p−q
).

Since every tight contact lens space is planar [79], each minimal symplectic filling of
(L(p, q), ξst) is deformation equivalent to a genus-zero allowable symplectic Lefschetz fi-
bration overD2 by Theorem 3.10. In [14], Bhupal and the author gave an algorithm to de-
scribe any minimal symplectic filling of(L(p, q), ξst) as a genus-zero allowable Lefschetz
fibration overD2 and showed that

Theorem 6.2. [14] Any minimal symplectic filling of(L(p, q), ξst) is obtained by a se-
quence of rational blowdowns along linear plumbing graphs starting from the minimal
resolution of the corresponding cyclic quotient singularity.

Remark. When coupled with the results in [69], in which Nemethi and Popescu-Pampu
proved that the classification of Milnor fibers for a cyclic quotient singularity agrees with
Lisca’s classification of symplectic fillings(L(p, q), ξst), Theorem 6.2 immediately implies
[14] that any Milnor fiber of any smoothing of the complex two-dimensional cyclic quotient
singularity can be obtained, up to diffeomorphism, by a sequence of rational blowdowns
along linear plumbing graphs from the Milnor fiber diffeomorphic to the minimal resolu-
tion of the singularity.

Acknowledgement: We would like to thank the referee for carefully reading of our manu-
script and for his/her extensive comments that helped to improve our presentation.
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Norm. Supér. (4) 44 (2011), no. 5, 801-853.

[71] H. Ohta and K. Ono,Simple singularities and topology of symplectically filling 4-manifolds.Com-
ment. Math. Helv. 74 (1999) 575-590.

[72] H. Ohta and K. Ono,Symplectic fillings of the link of simple elliptic singularities. J. Reine und
Angew. Math. 565 (2003), 183-205.

[73] H. Ohta and K. Ono,Simple singularities and symplectic fillings.J. Differential Geom. 69 (2005),
no. 1, 1-42.

[74] B. Ozbagci and A. I. Stipsicz,Contact 3-manifolds with infinitely many Stein fillings.Proc. Amer.
Math. Soc. 132 (2004), no. 5, 1549-1558.

[75] B. Ozbagci and A. I. Stipsicz,Surgery on contact 3-manifolds and Stein surfaces.Bolyai Soc. Math.
Stud., Vol.13, Springer, 2004.

[76] O. Plamenevskaya,Contact structures with distinct Heegaard Floer invariants.Math. Res. Lett. 11
(2004), no. 4, 547-561.

[77] O. Plamenevskaya,On Legendrian surgeries between lens spaces.J. Symplectic Geom. 10 (2012),
no. 2, 165181.



ON THE TOPOLOGY OF FILLINGS OF CONTACT3-MANIFOLDS 45

[78] O. Plamenevskaya and J. Van Horn-Morris,Planar open books, monodromy factorizations and sym-
plectic fillings.Geom. Topol. 14 (2010), no. 4, 2077-2101.

[79] S. Schönenberger,Determining symplectic fillings from planar open books.J. Symplectic Geom. 5
(2007), no. 1, 19-41.

[80] I. Smith,Lefschetz pencils and divisors in moduli space.Geom. Topol. 5 (2001), 579-608.
[81] L. Starkston,Symplectic fillings of Seifert fibered spaces.Preprint, arXiv:1304.2420.
[82] A. I. Stipsicz,Gauge theory and Stein fillings of certain 3-manifolds.Turkish J. Math. 26 (2002),

no. 1, 115-130.
[83] A. Stipsicz,On the geography of Stein fillings of certain3-manifolds.Michigan Math. J. 51 (2003),

327-337.
[84] S. Tanaka,On sections of hyperelliptic Lefschetz fibrations.Algebr. Geom. Topol. 12 (2012), no. 4,

2259-2286.
[85] C. H. Taubes,The Seiberg-Witten invariants and symplectic forms.Math. Res. Lett. 1 (1994), no. 6,

809-822.
[86] W. P. Thurston,Some simple examples of symplectic manifolds.Proc. Amer. Math. Soc. 55 (1976),

no. 2, 467468.
[87] W. P. Thurston and H. Winkelnkemper,On the existence of contact forms on3-manifolds.Proc.

Amer. Math. Soc. 52 (1975), 345-347.
[88] I. Torisu, Convex contact structures and fibered links in 3-manifolds.Internat. Math. Res. Notices

2000, no. 9, 441-454.
[89] J. Van Horn-Morris,Constructions of Open Book Decompositions.. Ph.D thesis, UT Austin, 2007.
[90] A. Wand, Factorizations of diffeomorphisms of compact surfaces with boundary. Preprint,

arXiv:0910.5691.
[91] C. Wendl,Strongly fillable contact manifolds and J -holomorphic foliations.Duke Math. J. 151

(2010), no. 3, 337-384.
[92] C. Wendl,Contact 3-manifolds, holomorphic curves and intersectiontheory.Lecture notes.
[93] E. Witten,Monopoles and four-manifolds.Math. Res. Lett. 1 (1994), no. 6, 769-796.

DEPARTMENT OFMATHEMATICS, KOÇ UNIVERSITY, ISTANBUL, TURKEY
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