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ABSTRACT. We describe a Lefschetz fibration of genus one on the disk cotangent bundle
of any closed orientable surfaceΣ. As a corollary, we obtain an explicit genus one open
book decomposition adapted to the canonical contact structure on the unit cotangent bundle
of Σ.

1. INTRODUCTION

Let Σ be a closed, connected and orientable surface. Let(DT ∗Σ, ωcan) denote the disk
cotangent bundle ofΣ equipped with its canonical symplectic structureωcan = dλcan,
whereλcan is the Liouville one form. Let(ST ∗Σ, ξcan) denote the unit cotangent bundle of
Σ equipped with its canonical contact structureξcan defined as the kernel of the restriction
of λcan to ST ∗Σ. It follows that(DT ∗Σ, ωcan) is an exact symplectic filling of its contact
boundary(ST ∗Σ, ξcan). In fact, (DT ∗Σ, ωcan) can be upgraded to a Weinstein filling of
(ST ∗Σ, ξcan) and hence by Cieliebak and Eliashberg [3],(DT ∗Σ, J) is a Stein filling of
(ST ∗Σ, ξcan), for some complex structureJ . Therefore, by the work of Akbulut and the
author [2] and also Loi and Piergallini [14],DT ∗Σ admits a Lefschetz fibration overD2

whose induced open book on the boundaryST ∗Σ supportsξcan. In this article, we find
an explicit Lefschetz fibrationDT ∗Σ → D2 with minimal fiber genus, whose induced
open book on the boundaryST ∗Σ supportsξcan, using methods specifically tailored to the
cotangent bundle of a surface and very different from those general methods described in
[2] and [14].

It is clear by definition that the minimal fiber genus of such a Lefschetz fibration must be
greater than equal to the support genussg(ST ∗Σ, ξcan), which is the minimal page genus
of an open book decomposition ofST ∗Σ adapted toξcan. Let g denote the genus of the
surfaceΣ at hand. Forg = 0, there is a Lefschetz fibrationDT ∗S2 → D2, whose regular
fiber is the annulus and whose monodromy is the square of the positive Dehn twist along
the core circle. The restriction of this Lefschetz fibrationto the boundary gives aplanar
open book decomposition ofST ∗S2 ∼= RP

3 adapted toξcan. Forg ≥ 1, however, the con-
tact3-manifold(ST ∗Σ, ξcan) is known to be non-planar. By an obstruction to planarity due
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to Etnyre [5],sg(ST ∗T 2 ∼= T 3, ξcan) 6= 0. Moreover, Van Horn-Morris [20] constructed
an explicit open book adapted to(T 3, ξcan) whose page is a genus one surface with three
boundary components. Furthermore, McDuff [16] showed thatfor any g > 1, there is
an exact symplectic4-manifold with two convex boundary components, one of whichis
(ST ∗Σ, ξcan). By capping off the other boundary component with concave symplectic fill-
ings with arbitrarily largeb+2 (cf. [6]), we obtain strong symplectic fillings of(ST ∗Σ, ξcan)
with arbitrarily largeb+2 . Therefore,(ST ∗Σ, ξcan) cannot be planar forg > 1 either, by
the aforementioned obstruction of Etnyre. On the other hand, using Giroux’s fundamental
work [9] on convex contact structures, Massot [15] showed that for g > 1, the contact3-
manifold(ST ∗Σ, ξcan) has an adapted open book decomposition whose page is a genus one
surface with4g + 4 boundary components—without explicitly describing its monodromy.
To summarize, we have

sg(ST ∗Σ, ξcan) =

{

0 if g = 0
1 if g > 0.

Therefore, forg > 0, any Lefschetz fibrationDT ∗Σ → D2 whose induced open book on
the boundaryST ∗Σ supportsξcan must have fiber genus at least one. Here we explicitly
construct genus one Lefschetz fibrationsDT ∗Σ → D2, using two different methods (due to
Johns [11] and Ishikawa [10]), and show that these fibrationsare isomorphic. As a corol-
lary, we obtain an explicit genus one open book decomposition adapted to the canonical
contact structureξcan on ST ∗Σ. We would like to point out that there is an orientation
error in Ishikawa’s paper [10] and the total space of the Lefschetz fibrations he constructs
is orientation-preserving diffeomorphic to the diskcotangentbundle rather than the disk
tangentbundle (see Section 4.1, for further details). Note that both methods due to Johns
and Ishikawa require the choice of a Morse functionf : Σ → R, to begin with.

The results in this paper greatly improve our earlier work in[17], where we used the method
of Johns, to describe a Lefschetz fibrationDT ∗Σ → D2 of genusg and hence agenusg
open book decomposition adapted to(ST ∗Σ, ξcan). In that article, we used the standard
Morse function onΣ, with a unique index zero critical point. The improvement here comes
by the choice of a Morse function onΣ with two index zero,2g + 2 index one, and two
index two critical points. As a matter of fact, Massot obtains an open book decompo-
sition adapted to(ST ∗Σ, ξcan) by promoting any given self-indexed Morse function on
Σ to an orderedξcan-convex Morse function onST ∗Σ, and the minimum possible genus
for his open book decomposition is achieved by using a non-standard Morse function onΣ
whose number of critical points of each index agrees with theone that we mentioned above.
Moreover, such a Morse function appears again in our construction of a Lefschetz fibration
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DT ∗Σ → D2 of genus one, using Ishikawa’s method. The existence of sucha Morse func-
tion onΣ is the unifying theme in all three constructions, which explains the fact that in
each construction, the page of the open book decomposition is of genus one with precisely
4g + 4 boundary components. Note that, Massot obtains his open book decomposition by
“convexifying” any given Morse function onΣ, whereas Johns and Ishikawa obtains their
Lefschetz fibrations by “complexifying” the Morse functionat hand.

Although the existence of a genus one open book decomposition adapted to(ST ∗Σ, ξcan)
essentially follows from the fundamental work of Giroux [9], we believe that by providing
an explicit positive factorization of the monodromy of a genus one open book decompo-
sition adapted toξcan, we fill a gap in the literature. Moreover, we hope that our work
maybe used towards settling Wendl’s conjecture [22, Conjecture 9.23]:Any exact filling of
(ST ∗Σ, ξcan) is Liouville deformation equivalent to(DT ∗Σ, ωcan). This conjecture is true
for g = 1 as shown by Wendl [21] and some evidence was obtained recently to verify this
conjecture affirmatively by Li, Mak and Yasui [12] and also bySivek and Van-Horn Morris
[19], who showed that any exact filling must, at least topologically, bear some resemblance
toDT ∗Σ for g ≥ 2.

2. CANONICAL CONTACT STRUCTURE ON THE UNIT COTANGENT BUNDLE OF AN

ORIENTABLE SURFACE

Suppose thatΣ is any closed, connected, orientable surface. A coorientedcontact element
of Σ is a pair(p, L) wherep ∈ Σ andL is a cooriented line tangent toΣ at p. The space
of cooriented contact elements ofΣ is the collection of all cooriented contact elements of
Σ. There exists a canonical coorientable contact structureξcan on the space of cooriented
contact elements ofΣ, which is defined as follows. Letπ denote the natural projection of
the space of cooriented contact elements ofΣ ontoΣ. For a pointp ∈ S and a cooriented
line L in TpS, let ξ(p,L) denote the cooriented plane described uniquely by the equation
π∗(ξ(p,L)) = L ∈ TpΣ. The canonical contact structureξcan on the space of cooriented
contact elements ofΣ consists of these planes.

If Σ is equipped with an arbitrary Riemannian metricµ, then there is a bundle isomor-
phismΦ from the tangent bundleTΣ to the cotangent bundleT ∗Σ, which is defined fiber-
wise

Φp : TpΣ → T ∗
pΣ

by v → µp(v,−), for anyp ∈ Σ. This induces a bundle metricµ∗ onT ∗Σ by

µ∗
p(u1, u2) = µp(Φ

−1
p (u1),Φ

−1
p (u2))
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for anyu1, u2 ∈ T ∗
pΣ. Therefore, one can define the unit tangent bundleSTΣ and the unit

cotangent bundleST ∗Σ fiberwise as the collection of unit length vectors and covectors in
TpΣ andT ∗

pΣ, respectively.

The space of cooriented contact elements ofΣ can be identified with the unit tangent bundle
STΣ as well as the unit cotangent bundleST ∗Σ. The identification withSTΣ is given
by taking a cooriented contact element(p, L) to the vectorv ∈ STpΣ, which is positively
orthonormal toL in TpΣ with respect toµp. Similarly, the identification withST ∗Σ is given
by taking a cooriented contact element(p, L) to the unit covectorΦp(v) = µp(v,−) ∈ T ∗

pΣ.
Note that the Liouville1-formλcan onT ∗Σ descends to a contact1-form onST ∗Σ, denoted
again byλcan. The canonical contact structureξcan onST ∗Σ is given by the kernel ofλcan
under the above identification (see for example [8, page 32]).

The disk tangent bundleDTΣ and the disk cotangent bundleDT ∗Σ are defined fiberwise as
the collection of vectors and covectors of length less than or equal to one inTpΣ andT ∗

pΣ,
respectively. It follows that∂(DTΣ) = STΣ and∂(DT ∗Σ) = ST ∗Σ. By the discussion
above, we get anorientation-reversingdiffeomorphism betweenDT ∗Σ andDTΣ. More-
over, the disk cotangent bundleDT ∗Σ equipped with its canonical symplectic structure
ωcan = dλcan is an exact symplectic filling of its contact boundary(ST ∗Σ, ξcan).

3. A GENUS ONELEFSCHETZ FIBRATION ON THE DISK COTANGENT BUNDLE OF AN

ORIENTABLE SURFACE

3.1. Exact symplectic Lefschetz fibrations on cotangent bundles. An exact symplectic
structure on a smooth4-manifoldX with codimension2 corners is an exact symplectic2-
form ω = dλ onX such that the Liouville vector field (which is by definitionω-dual toλ)
is transverse to each boundary stratum of codimension1 and points outwards. Note thatλ
induces a contact form on each boundary stratum and(W,ω) becomes an exact symplectic
filling of its contact boundary(∂X, ker λ) provided that the corners ofW are rounded off
(cf. [18, Lemma 7.6]).

Definition 3.1. Suppose that(X,ω = dλ) is an exact symplectic4-manifold with codimen-
sion2 corners. We say that a smooth mapπ : X → D2 is an exact symplectic Lefschetz
fibration on(X,ω) if it the following four conditions are satisfied.

(1) There are finitely many critical pointsq1, . . . , qk of the mapπ, all of which belong to
the interior ofX. In addition, around each critical point, the smooth mapπ is modeled on
the map(z1, z2) → z21 + z22 in complex local coordinates compatible with the orientations
onX andD2, respectively.
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(2) Each fiber of the mapπ|X\{q1,...,qk} : X\{q1, . . . , qk} → D2 is a symplectic submanifold
of (X,ω).

(3) The boundary∂X is the union of two smooth strata meeting at a codimension2 corner.
More precisely,∂X = ∂vX ∪ ∂hX where

∂vX = π−1(∂D2) and∂hX =
⋃

x∈D2

∂(π−1(x)).

(4) We also require thatπ|∂vX : ∂vX → ∂D2 is smooth fibration andπ is a trivial smooth
fibration overD2 near∂hX.

The stratum∂vX admits a surface fibration overS1, while the stratum∂hX is a disjoint
union ofm > 0 copies of the solid torusS1 ×D2, and these strata meet meet each other at
the corner

∂vX ∩ ∂hX = ∂(∂hX) =

m
∐

i=1

(S1 × ∂D2).

We conclude that∂X, provided that the corners ofX are rounded off, acquires an open
book decomposition given byπ|∂X\B : ∂X \B → ∂D2 where∂hX is viewed as a tubular
neighborhood of the binding

B =

m
∐

i=1

(S1 × {0}).

Moreover, the1-formλ restricts to a contact form on∂X whose kernel is a contact structure
supported by this open book decomposition.

Remark 3.2. If we suppress the symplectic formω onX, then a smooth mapπ : X →
D2 which satisfies only the conditions (1) and (4) in Definition 3.1 is called a Lefschetz
fibration onX.

Definition 3.3. For i = 1, 2, let (Xi, ωi = dλi) be an exact symplectic4-manifold with
convex boundary. A conformal exact symplectomorphism from(X1, ω1) to (X2, ω2) is a
diffeomorphismψ : X1 → X2 such thatψ∗λ2 = Cλ1 + dh for some smooth function
h : X1 → R, and some real numberC > 0. If C = 1, thenψ is called an exact symplecto-
morphism.

Now, we briefly recall the main result of Johns in [11], which we tailor appropriately to fit
in with the context of the present article. LetΣ be a closed, connected, orientable surface of
genusg equipped with a Morse functionf : Σ → R and a Riemannian metricµ such that
(f, µ) is Morse-Smale. Based on this data, Johns constructed an exact symplectic Lefschetz
fibration πf : (E, ω) → D2 such that there is a conformally exact symplectomorphism
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φ : (E, ω) → (DT ∗Σ, ωcan). Here we assume that the corners ofE are rounded off, so that
it can be viewed as an exact symplectic4-manifold with convex boundary.

Remark 3.4. Since any conformal exact symplectomorphism is, in particular, a diffeo-
morphism by definition, we conclude thatE is diffeomorphic toDT ∗Σ, and we viewπf
as a Lefschetz fibration onDT ∗Σ. Moreover, since(E, ω = dλ) is a exact symplectic
filling of its contact boundary(∂E, ker λ) and the conformal exact symplectomorphism
φ : (E, ω) → (DT ∗Σ, ωcan) satisfiesφ∗ωcan = Kω for some constantK > 0, the
open book decomposition induced byπf on the boundary∂(DT ∗Σ) = ST ∗Σ supports
the canonical contact structureξcan.

In the following, we apply Johns’ method to construct an explicit Lefschetz fibration
DT ∗Σ → D2, with the caveat above, where the regular fiber is a surface ofgenus one
with 4g+4 boundary components. To illustrate the method of construction, we first give in
Section 3.2 a detailed treatment whenΣ is a closed, orientable surface of genus one.

3.2. The case ofT 2. The construction of Johns [11] starts with a Morse functionT 2 → R

or equivalently a handle decomposition ofT 2, which possibly includes twisted1-handles.
Instead of giving an explicit Morse function onT 2, here we describe a handle decompo-
sition of T 2 given by two0-handles, four twisted1-handles, and two2-handles. The four
1-handles are attached to the0-handles as shown in Figure 1. The result is an orientable
surface of genus one with two boundary components. We obtainT 2 by attaching the2-
handles.

FIGURE 1. The top and bottom rectangular regions are the0-handles, while
each twisted band connecting them is a twisted1-handle.

Based on this handle decomposition ofT 2, we describe a Lefschetz fibrationDT ∗T 2 → D2

of genus one, using the recipe given explicitly in [11, Section 4.3]. We first describe the
regular fiber of the Lefschetz fibrationDT ∗T 2 → D2, as an abstract surface of genus
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one with eight boundary components. We start with two disjoint annuliA1 andA2 corre-
sponding to the0-handles ofT 2 as depicted in Figure 2, where the horizontal rectangular
region labeled byAi represents the annulusAi by identifying its left-edge with its right-
edge, fori = 1, 2. Now, for each twisted1-handle ofT 2, we attach two1-handles to the
unionA1 ∪ A2, which is equivalent to plumbing an annulus. Therefore, we plumb four
disjoint annuliB1, B2, B3, B4 to A1 ∪ A2, where each annulusBj is represented by the
vertical rectangular region labeled byBj in Figure 2, by identifying its top-edge with its
bottom-edge, forj = 1, 2, 3, 4. Note that these six annuli are plumbed together in the
eight overlapping squares in Figure 2. As a result, we obtainan orientable surface of genus
one with eight boundary components, which is the regular fiber of the Lefschetz fibration
DT ∗T 2 → D2.

A1

A2

B1 B2 B3 B4

a1

a2

b1 b2 b3 b4

FIGURE 2. The vanishing cyclesa1, a2, b1, b2, b3, b4.

Next, we describe the vanishing cycles of this Lefschetz fibration. The first two vanishing
cycles are the core circles ofA1 andA2, which we denote bya1 and a2, respectively.
The next four vanishing cycles are the core circles ofB1, B2, B3, B4, which we denote
by b1, b2, b3, b4, respectively (see Figure 2). The last two vanishing cyclesc1 andc2 are
obtained by performingsimultaneous surgeryof a1 ∪ a2 andb1 ∪ b2 ∪ b3 ∪ b4 at each point
where these curves meet. This means that any timeai intersects somebj , the intersection
point is resolved by a surgery, whereai turns to the left as illustrated in Figure 3. By
resolving the eight intersection points in Figure 2, we obtain a curve with two components,
denoted byc1 andc2 as shown in Figure 4.

The monodromy of the Lefschetz fibrationDT ∗T 2 → D2 is given by the composition of
positive Dehn twists

D(a1)D(a2)D(b1)D(b2)D(b3)D(b4)D(c1)D(c2).
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ai

bj

FIGURE 3. Surgery at a point whereai meetsbj .

c1 c2

FIGURE 4. The last two vanishing cyclesc1 andc2.

To summarize, we proved the following result.

Proposition 3.5. There exists a Lefschetz fibrationDT ∗T 2 ∼= T 2 × D2 → D2, whose
regular fiber is a surface of genus one with eight boundary components. The monodromy
of this Lefschetz fibration is given by the composition of positive Dehn twists

D(a1)D(a2)D(b1)D(b2)D(b3)D(b4)D(c1)D(c2)

where the curvesa1, a2, b1, b2, b3, b4, c1, c2 are depicted in Figures 5 and 6 on a standard
genus one surface with eight boundary components.

3.3. General case.The discussion in Section 3.2 can be generalized to the case of an
arbitrary closed, connected, orientable surfaceΣ of genusg ≥ 0 as follows. There is a
handle decomposition ofΣ given by two0-handles,2g + 2 twisted1-handles, and two2-
handles, where we attach the1-handles to the0-handles analogous to theg = 1 case (see
Figure 1). The result is an orientable surface of genusg with two boundary components.
By attaching the2-handles, we obtainΣ.
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a1

a2

b1
b2

b3
b4

FIGURE 5. The vanishing cyclesa1, a2, b1, b2, b3, b4.

c1 c2

FIGURE 6. The vanishing cyclesc1 andc2.

In the following, we describe a Lefschetz fibrationDT ∗Σ → D2 of genus one, based on
this handle decomposition ofΣ. The regular fiber of this Lefschetz fibration is obtained
by plumbing2g + 2 disjoint annuliB1, . . . , B2g+2 corresponding to the2g + 2 twisted1-
handles, to the two disjoint annuliA1 andA2 corresponding to the0-handles, analogous to
theg = 1 case (see Figure 2). The result is an orientable surface of genus one with4g + 4
boundary components.

The vanishing cycles of this Lefschetz fibration are obtained as follows. Letai denote the
core circle ofAi for i = 1, 2 andbj denote the core circle ofBj for j = 1, . . . , 2g + 2. Let
c1 andc2 denote the two curves on the fiber obtained by simultaneous surgery ofa1 ∪ a2
andb1 ∪ b2 ∪ · · · ∪ b2g+2, at each point where they meet, analogous to theg = 1 case (see
Figure 4). Therefore, we have the following result.

Theorem 3.6. For any integerg ≥ 0, the disk cotangent bundleDT ∗Σ admits a Lefschetz
fibration overD2, whose regular fiber is a surface of genus one with4g + 4 boundary
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components. The monodromy of this Lefschetz fibration is given by the composition of
positive Dehn twists

D(a1)D(a2)D(b1)D(b2) · · ·D(b2g+2)D(c1)D(c2)

where the curvesa1, a2, b1, b2, . . . , b2g+2, c1, c2 are depicted in Figures 7 and 8 on a stan-
dard genus one surface with4g + 4 boundary components.

The next corollary immediately follows from Theorem 3.6 coupled with Remark 3.4.

Corollary 3.7. For any integerg ≥ 0, the unit cotangent bundleST ∗Σ admits an open
book decomposition adapted to the canonical contact structureξcan, whose page is a genus
one surface with4g + 4 boundary components. The monodromy of this open book decom-
position is given by the composition of positive Dehn twists

D(a1)D(a2)D(b1)D(b2) · · ·D(b2g+2)D(c1)D(c2)

where the curvesa1, a2, b1, b2, . . . , b2g+2, c1, c2 are depicted in Figures 7 and 8.

a1

a2

b1
b2

b3
b2g+2

2g + 2 2g + 2

FIGURE 7. The vanishing cyclesa1, a2, b1, b2, b3, . . . , b2g+2.

c1
c2

2g + 2 2g + 2

FIGURE 8. The vanishing cyclesc1 andc2.
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Note that forg = 0, 1, the results above are known to be not optimum in the following
sense. Forg = 0, there is aplanar Lefschetz fibrationDT ∗S2 → D2, whose regular fiber
is the annulus and whose monodromy is the square of the positive Dehn twist along the
core circle. The restriction of this Lefschetz fibration to the boundary gives aplanar open
book decomposition ofST ∗S2 ∼= RP

3 adapted toξcan. In other words, the support genus
of (RP3, ξcan) is zero, while its binding number is equal to two (cf. [7]).

As we have already mentioned in the Introduction, the contact 3-manifold (ST ∗Σ, ξcan)
is not planar forg ≥ 1. For g = 1, Van Horn-Morris [20] constructed an explicit open
book decomposition adapted to(ST ∗T 2 ∼= T 3, ξcan) whose page is a genus one surface
with threeboundary components. Therefore, the support genus of(T 3, ξcan) is one, while
its binding number is less than or equal to three. As observedby Massot [15], and con-
firmed via different methods by our Corollary 3.7, for anyg ≥ 1, the support genus of
(ST ∗Σ, ξcan) is one and the binding number is less than or equal to4g + 4. Therefore the
following question appears naturally:

Question 3.8.What is the binding number of(ST ∗Σ, ξcan) for g ≥ 1?

Note thatDT ∗T 2 ∼= T 2×D2 does not admit a planar Lefschetz fibration overD2, even if we
do not impose any boundary conditions. Suppose, otherwise,thatT 2 ×D2 admits a planar
Lefschetz fibration overD2. Then we would have a planar strongly symplectically fillable
contact structure on the boundary∂(T 2 ×D2) ∼= T 3. This gives a contradiction sinceξcan
is the unique strongly symplectically fillable contact structure onT 3 by Eliashberg [4], and
it is non-planar [5].

4. ANOTHER GENUS ONELEFSCHETZ FIBRATION ON THE DISK COTANGENT BUNDLE

OF AN ORIENTABLE SURFACE

4.1. Lefschetz fibrations on disk cotangent bundles.In [10, Proposition 3.1], Ishikawa
constructs a Lefschetz fibration on the disktangentbundle of an orientable surfaceΣ, based
on the choice of a Morse function onΣ. His construction is based on Lemma 3.2, which in
turn relies on Lemma 2.6 in his paper. We would like to point out that there is an orientation
error in Lemma 2.6 of Ishikawa’s paper. His choice of complexcharts in Lemma 2.6 is
orientation-reversingfor the tangent bundle rather than orientation-preserving. Therefore,
the Lefschetz fibration he constructs in Proposition 3.1 on the disk tangent bundleDTΣ is
achiral, i.e., all Dehn twists are left-handed. By reversing the orientation of the total space
we get a Lefschetz fibration on the diskcotangentbundleDT ∗Σ. Thus, we conclude that
Ishikawa in fact constructs Lefschetz fibrations onDT ∗Σ rather thanDTΣ.

Remark 4.1. Here is another way to see the error in Ishikawa’a paper [10].ForΣ = S2,
Ishikawa’s method would give a Lefschetz fibration on the disk tangent bundle ofS2, which
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is theD2-bundle overS2 with Euler number+2. This would imply that theD2-bundle over
S2 with Euler number+2 admits a Stein structure (cf. [2, 14]) which, indeed, contradicts
to the adjunction inequality of Lisca and Matić [13] for Stein surfaces.

With this caveat in mind, we briefly describe Ishikawa’s construction of a Lefschetz fibra-
tion onDT ∗Σ. To construct his fibration, Ishikawa starts with anyadmissible divideP on
Σ. For the purposes of the present paper, a divideP ⊂ Σ is a generic immersion of the
disjoint union of finitely many copies of the unit circle. A divideP is called admissible if it
is connected, each component ofΣ \ P is simply connected andP admits a checkerboard
coloring, which means that one can assign black or white color to each component ofΣ\P ,
such that any two neighboring components are assigned opposite colors.

Based on an admissible divideP onΣ, there is a Morse functionfP : Σ → R associated
with P , which essentially means that the zero level set offP coincides withP , each double
point ofP corresponds to a critical point offP of index one, and each black (resp. white)
region ofΣ \P contains an index two (resp. zero) critical point offP . The Morse function
fP , in turn, gives an “almost complexified Morse function”FP : T ∗Σ → C which descends
to a Lefschetz fibrationπP : DT ∗Σ → D2. Moreover, generalizing the work of A’Campo
[1], Ishikawa describes how to obtain the regular fiber and the monodromy of the Lefschetz
fibrationπP , based only on the divideP .

In the following, by choosing a particular admissible divideP onΣ and applying Ishikawa’s
method, we obtain an explicit Lefschetz fibrationDT ∗Σ → D2 in Theorem 4.5, with2g+6
vanishing cycles, whose regular fiber is a genus one surface with 4g + 4 boundary com-
ponents. To illustrate the method of construction, we first give in Section 4.2 a detailed
treatment whenΣ is a closed, orientable surface of genus one.

4.2. The case ofT 2. In this subsection, by choosing a particular admissible divide on the
torusT 2, we construct an explicit Lefschetz fibrationDT ∗T 2 → D2 of genus one. The
admissible divideP we have in mind is the union of the four curvesP1, P2, P3, P4 on T 2

intersecting as in Figure 9. The complementT 2\P has four connected components each of
which is a disk. We assign a checkerboard coloring toT 2 \ P as follows. The component
bounded by the bold curves, facing the reader in Figure 9, is assigned the white color,
which in turn, determines the color of the remaining three components ofT 2 \ P , since
neighboring components should have opposite colors. Basedon this choice ofP , there is a
Lefschetz fibrationDT ∗T 2 → D2. The fiber of this Lefschetz fibration can be constructed
via A’Campo’s method [1, page 15] as follows: We start with a roundabout, as depicted in
Figure 10, for each of the four double points of the divideP .
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P1

P2

P3

P4

FIGURE 9. The divideP = P1 ∪ P2 ∪ P3 ∪ P4 onT 2.

β

FIGURE 10. The roundabout: an annulus embedded inR3, with its core circleβ.

For each edge inP connecting any two double points, we insert a half-twisted band con-
necting the corresponding roundabouts. As a result, we get agenus one surface with eight
boundary components as shown in Figure 11.

The monodromy of this Lefschetz fibrationDT ∗T 2 → D2 is given by the product of eight
positive Dehn twists along the curvesα1, α2, β1, β2, β3, β4, γ1, γ2. The curvesβ1, β2, β3, β4
are the core circles of the four roundabouts in Figure 11. Thecurvesα1 andα2 are given
as the boundary of the two white regions in the checkerboard coloring we fixed above,
while the curvesγ1 andγ2 are given as the boundary of the two black regions. We depicted
the curvesα1, α2, γ1, γ2 in Figure 12. We summarize our discussion in Proposition 4.2
below.
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β1 β2 β3 β4

FIGURE 11. The vanishing cyclesβ1, β2, β3, β4.

α2

α1

γ1

γ2

FIGURE 12. The vanishing cyclesα1, α2, γ1, γ2.
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Proposition 4.2. There exists a Lefschetz fibrationDT ∗T 2 ∼= T 2 × D2 → D2, whose
regular fiber is a genus one surface with eight boundary components. The monodromy of
this Lefschetz fibration is given by the composition of positive Dehn twists

D(α1)D(α2)D(β1)D(β2)D(β3)D(β4)D(γ1)D(γ2)

where the curvesα1, α2, β1, β2, β3, β4, γ1, γ2 are depicted in Figures 11 and 12 on a genus
one surface with eight boundary components.

Remark 4.3. There is no a priori reason for the existence of a fiberwise diffeomorphism
between the Lefschetz fibrationDT ∗Σ → D2 described in Theorem 3.6 and the Lefschetz
fibrationDT ∗Σ → D2 described in Theorem 4.5 that takes the2g + 6 vanishing cycles of
the former to that of the latter. In Proposition 4.4, we provide such a diffeomorphism for
the caseg = 1. A general statement for anyg ≥ 0 is given in Theorem 4.6 below, whose
proof is analogous to theg = 1 case.

Proposition 4.4. The Lefschetz fibrationDT ∗T 2 → D2 described in Proposition 3.5 and
the Lefschetz fibrationDT ∗T 2 → D2 described in Proposition 4.2 are isomorphic.

Proof. Let π1 denote the Lefschetz fibrationDT ∗T 2 → D2 described in Proposition 3.5
andπ2 denote the Lefschetz fibrationDT ∗T 2 → D2 described in Proposition 4.2. The
regular fibers ofπ1 andπ2 are clearly diffeomorphic as abstract surfaces. In the follow-
ing, we establish an explicit diffeomorphism between thesefibers which also preserves the
corresponding vanishing cycles.

Recall that the fiber (see Figure 2) ofπ1 is obtained simply by plumbing the four disjoint
annuliB1 ∪ B2 ∪ B3 ∪ B4 onto two disjoint annuliA1 ∪ A2, along the eight overlapping
squares. Moreover, the core circle of each annulus is a vanishing cycle. In the following,
we show that the fiber (shown in Figure 12) ofπ2 is obtained exactly in the same way.

For i = 1, 2, a neighborhood of the vanishing cycleαi on the regular fiber ofπ2, which is
shown in Figure 12, is indeed an annulus as we depicted again in Figure 13. Note that to
emphasize the neighborhoods ofα1 andα2, we erased part of the fiber in Figure 12, which
we indicated by the dotted circles in Figure 13. Similarly, for j = 1, 2, 3, 4, a neighborhood
of the curveβj on the fiber in Figure 11 is a roundabout. Now we claim that the fiber in
Figure 11 (or Figure 12) can be obtained by plumbing the four disjoint roundabouts, each
one is a neighborhood ofβj , onto the disjoint union of the neighborhoods ofα1 andα2

depicted in Figure 13. To prove our claim, we illustrate in Figure 14 the result of plumbing
a roundabout onto the disjoint neighborhoods ofα1 andα2 inside a dotted circle.

Note that inside each one of the four dotted circles in Figure13, there are two disjoint
“twisted squares”, and each plumbing takes place inside oneof these circles. Therefore, to
establish a diffeomorphism between the regular fiber ofπ2 and the regular the fiber ofπ1,
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α2

α1

FIGURE 13. The neighborhoods of the vanishing cyclesα1 andα2.

βj α2

α1

FIGURE 14. Plumbing (bottom) the roundabout (top left) onto the annuli
neighborhoods ofα1 andα2 (top right).

we identify the neighborhood ofαi with the annulusAi, which is a neighborhood ofai and
the neighborhood ofβj with the annulusBj , which a neighborhood ofbj . Our discussion
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so far shows that the regular fiber ofπ2 is diffeomorphic to the regular fiber ofπ1 by a
diffeomorphism sendingαi to ai for i = 1, 2 andβj to bj for j = 1, 2, 3, 4.

Finally, recall that the last vanishing cyclesc1 andc2 of π1 are obtained by simultaneous
surgery ofa1 ∪ a2 andb1∪ b2 ∪ b3 ∪ b4, at each point where they meet. We just observe that
γ1 andγ2 are also obtained by simultaneous surgery ofα1 ∪ α2 andβ1 ∪ β2 ∪ β3 ∪ β4, at
each point where they meet. We conclude that the diffeomorphism above takesγi to ci as
well for i = 1, 2. Therefore, there is an isomorphism between the two genus one Lefschetz
fibrationsπ2 : DT ∗T 2 → D2 andπ1 : DT ∗T 2 → D2. �

4.3. General case.The discussion in Section 4.2 can be generalized to the case of an
arbitrary closed, connected, orientable surfaceΣ of genusg ≥ 0 as follows. We start with
the admissible divideP onΣ given in Figure 15.

P1

P2

P3

P4 P2g

P2g+1

P2g+2

FIGURE 15. The divideP = P1 ∪ P2 ∪ · · · ∪ P2g+2 onΣ.

Just as in the case of genus one,Σ \ P has four connected components, each of which is
a disk andΣ \ P admits a checkerboard coloring. Based on this choice ofP , there is a
Lefschetz fibrationDT ∗Σ → D2. The fiber of this Lefschetz fibration can be constructed
as described in Section 4.2: We start with a roundabout for each double point of the divide
P , and for each edge inP connecting any two double points, we insert a half-twisted band
connecting the corresponding roundabouts. As a result, we get a genus one surface with
4g + 4 boundary components, as shown in Figure 16.

Moreover, the monodromy of this Lefschetz fibrationDT ∗Σ → D2 is given by the product
of 2g+6 positive Dehn twists along the curvesα1, α2, β1, β2, . . . , β2g+2, γ1, γ2. The curves
β1, β2, . . . , β2g+1, β2g+2 are the core circles of the roundabouts in Figure 16. The curvesα1

andα2 are given as the boundary of the two white regions in the checkerboard coloring we
fixed above, while the curvesγ1 andγ2 are given as the boundary of the two black regions.
We depicted the curvesα1, α2, γ1, γ2 in Figure 17.
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β1 β2 β3
β2g β2g+1 β2g+2

FIGURE 16. The vanishing cyclesβ1, β2, . . . , β2g+2.

α2
γ1

γ2
α1

FIGURE 17. The vanishing cyclesα1, α2, γ1, γ2.

The proofs of Theorem 4.5 and Theorem 4.6 are completely analogous to the proofs of
Proposition 4.2 and Proposition 4.4, respectively. One crucial observation is thatγ1 andγ2
are obtained as a result of the simultaneous surgery ofα1 ∪ α2 andβ1 ∪ β2 ∪ · · · ∪ β2g+2,
at each point where they meet. The reader can verify this directly for the curves depicted
in Figures 16 and 17. This fact can also be verified as follows:Theα curves are given as
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the boundaries of the two zero handles onΣ. Theβ curves are then formed from the union
of the cores of the one handles joined together in the zero handles. The result of surgery
between theα andβ curves yields a curve isotopic to the boundary of the union ofthe
0-handles and1-handles, in other words the attaching circles for the2-handles. This also
explains how the constructions of Ishikawa and Johns relateto the Morse function onΣ in
the same way (see [11, page 69]).

Theorem 4.5. For any integerg ≥ 0, the disk cotangent bundleDT ∗Σ admits a Lefschetz
fibration overD2, whose regular fiber is a genus one surface with4g + 4 boundary com-
ponents. The monodromy of this Lefschetz fibration is given by the composition of positive
Dehn twists

D(α1)D(α2)D(β1)D(β2) · · ·D(β2g+2)D(γ1)D(γ2)

where the curvesβ1, β2, . . . , β2g+1, β2g+2 are shown in Figure 16 andα1, α2, γ1, γ2 are
shown in Figure 17.

Theorem 4.6. For any integerg ≥ 0, the Lefschetz fibrationDT ∗Σ → D2 described
in Theorem 3.6 and the Lefschetz fibrationDT ∗Σ → D2 described in Theorem 4.5 are
isomorphic.

The next result immediately follows from Theorem 4.6 and Corollary 3.7.

Corollary 4.7. For any integerg ≥ 0, the open book decomposition onST ∗Σ induced by
the Lefschetz fibrationDT ∗Σ → D2 described in Theorem 3.6 is isomorphic to the open
book decomposition onST ∗Σ induced by the Lefschetz fibrationDT ∗Σ → D2 described in
Theorem 4.5. Therefore, the open book decomposition onST ∗Σ induced by the Lefschetz
fibrationDT ∗Σ → D2 described in Theorem 4.5 supportsξcan as well.

Finally, we would like to list some questions that arise fromthe discussion in this pa-
per.

1) Ishikawa does not give any information about the contact structures onST ∗Σ adapted
to the open book decompositions which are filled by the various Lefschetz fibrations he
constructs onDT ∗Σ, depending on different possible choices of an admissible divide on
Σ. Our Corollary 4.7 shows that for a certain admissible divide onΣ, Ishikawa’s open book
decomposition onST ∗Σ supports the canonical contact structureξcan. Is it true that any
open book decomposition onST ∗Σ given by Ishikawa’s construction supportsξcan?

2) Is the Lefschetz fibration onDT ∗Σ of Johns (which uses the standard Morse function on
the surface) an explicit stabilization of the Lefschetz fibration in this paper? Is there a cal-
culus relating stabilizations and handle slides of Morse functions onΣ with stabilizations
and Hurwitz moves on Lefschetz fibrations onDT ∗Σ?
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3) Is it true that the Lefschetz fibration that Johns constructs onDT ∗Σ is isomorphic to that
Ishikawa constructs for all Morse functions onΣ, not just the specific Morse function that
gives the minimal genus Lefschetz fibration?

4) Is the number of boundary components in this article minimal amongst all genus one
Lefschetz fibrations built from the constructions of Johns/Ishikawa varying over different
Morse functions on the surface?
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