GENUS ONE LEFSCHETZ FIBRATIONS ON DISK COTANGENT BUNDLES
OF SURFACES

BURAK OZBAGCI

ABSTRACT. We describe a Lefschetz fibration of genus one on the digingeint bundle
of any closed orientable surfage As a corollary, we obtain an explicit genus one open
book decomposition adapted to the canonical contact streioh the unit cotangent bundle
of X.

1. INTRODUCTION

Let 3 be a closed, connected and orientable surface.(D&t*Y, w..,,) denote the disk
cotangent bundle of equipped with its canonical symplectic structurg,, = d\..n,
where),,, is the Liouville one form. LetST*X, £..,,) denote the unit cotangent bundle of
¥ equipped with its canonical contact structgrg, defined as the kernel of the restriction
of A\eyp t0 ST*X. It follows that(DT*Y, w..,) is an exact symplectic filling of its contact
boundary(ST*X, éean). In fact, (DT*Y, we.,) can be upgraded to a Weinstein filling of
(ST*X, &..n) and hence by Cieliebak and Eliashberg [@P7*%, J) is a Stein filling of
(ST*%, €.an), fOor some complex structuré. Therefore, by the work of Akbulut and the
author [2] and also Loi and Piergallini [14)T*Y admits a Lefschetz fibration oveép?
whose induced open book on the bound&fy*Y supportst,..,. In this article, we find
an explicit Lefschetz fibratiod7T*> — D? with minimal fiber genuswhose induced
open book on the boundasj™>: support<..,, using methods specifically tailored to the
cotangent bundle of a surface and very different from th&seal methods described in
[2] and [14].

It is clear by definition that the minimal fiber genus of suchedsichetz fibration must be
greater than equal to the support gery&S7T*%, £..,,), Which is the minimal page genus
of an open book decomposition 6f*Y. adapted t&..,. Let g denote the genus of the
surfaceX at hand. Foy = 0, there is a Lefschetz fibratioR7*S? — D?, whose regular
fiber is the annulus and whose monodromy is the square of thidygoDehn twist along
the core circle. The restriction of this Lefschetz fibrattorthe boundary gives planar
open book decomposition ¢f7*S? = RP* adapted t&,,,. Forg > 1, however, the con-

tact3-manifold (ST*X, &..,) iS known to be non-planar. By an obstruction to planarity due
1
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to Etnyre [5],sg(ST*T? = T3, £.0n) # 0. Moreover, Van Horn-Morris [20] constructed
an explicit open book adapted (@?, ¢..,,) whose page is a genus one surface with three
boundary components. Furthermore, McDuff|[16] showed tbatany ¢ > 1, there is

an exact symplecti¢-manifold with two convex boundary components, one of whgh
(ST*X, &.an)- By capping off the other boundary component with concaveggctic fill-
ings with arbitrarily large)] (cf. [6]), we obtain strong symplectic fillings 067+, £..,,)

with arbitrarily largeb;. Therefore,(ST*Y, £..,) cannot be planar fog > 1 either, by

the aforementioned obstruction of Etnyre. On the other hasithg Giroux’s fundamental
work [9] on convex contact structures, Massotl [15] showexd tbr ¢ > 1, the contacB-
manifold (ST, £..,) has an adapted open book decomposition whose page is a genus o
surface withdg + 4 boundary componentswithout explicitly describing its monodromy.
To summarize, we have

Sg(ST E,&:cm) = { 1 if i = 0.

Therefore, forg > 0, any Lefschetz fibratio®7T*Y — D? whose induced open book on
the boundarnST*> supportst.., must have fiber genus at least one. Here we explicitly
construct genus one Lefschetz fibratidng*> — D?, using two different methods (due to
Johns|[[11] and Ishikawa [10]), and show that these fibratewessomorphic. As a corol-
lary, we obtain an explicit genus one open book decompaoséaapted to the canonical
contact structure,.,,, on ST*>. We would like to point out that there is an orientation
error in Ishikawa’s papef [10] and the total space of the ¢led¢z fibrations he constructs
is orientation-preserving diffeomorphic to the disitangentoundle rather than the disk
tangentbundle (see Sectidn 4.1, for further details). Note thahoethods due to Johns
and Ishikawa require the choice of a Morse functfon® — R, to begin with.

The results in this paper greatly improve our earlier wordifi, where we used the method
of Johns, to describe a Lefschetz fibratibd™Y — D? of genusg and hence @enusg
open book decomposition adapted(87™*%, £..,,). In that article, we used the standard
Morse function ort:, with a unique index zero critical point. The improvementheomes
by the choice of a Morse function on with two index zero2g + 2 index one, and two
index two critical points. As a matter of fact, Massot obsaan open book decompo-
sition adapted tq.ST*%, £..,,) by promoting any given self-indexed Morse function on
Y] to an ordered.,,,-convex Morse function o7™*Y, and the minimum possible genus
for his open book decomposition is achieved by using a nanestrd Morse function oR
whose number of critical points of each index agrees witlotieethat we mentioned above.
Moreover, such a Morse function appears again in our cortsruof a Lefschetz fibration
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DT*Y — D? of genus one, using Ishikawa’s method. The existence of albrse func-
tion on X is the unifying theme in all three constructions, which exps$ the fact that in
each construction, the page of the open book decompost#tioingenus one with precisely
4g + 4 boundary components. Note that, Massot obtains his opek d@mmposition by
“convexifying” any given Morse function ok, whereas Johns and Ishikawa obtains their
Lefschetz fibrations by “complexifying” the Morse functiahhand.

Although the existence of a genus one open book decompuositiapted t4.S7*Y, £qar)
essentially follows from the fundamental work of Giroux,[@je believe that by providing
an explicit positive factorization of the monodromy of a gerone open book decompo-
sition adapted t@..,, we fill a gap in the literature. Moreover, we hope that our kvor
maybe used towards settling Wendl’s conjecture [22, Conje®.23]:Any exact filling of
(ST*X, &.4n) Is Liouville deformation equivalent taD7*3, w..,, ). This conjecture is true
for ¢ = 1 as shown by Wend[ [21] and some evidence was obtained rgdentéerify this
conjecture affirmatively by Li, Mak and Yasui [12] and also®iyek and Van-Horn Morris
[19], who showed that any exact filling must, at least topmally, bear some resemblance
to DT*Y. for g > 2.

2. CANONICAL CONTACT STRUCTURE ON THE UNIT COTANGENT BUNDLE OF A
ORIENTABLE SURFACE

Suppose thall is any closed, connected, orientable surface. A coorietaathct element
of ¥ is a pair(p, L) wherep € > and L is a cooriented line tangent % atp. The space
of cooriented contact elements Xfis the collection of all cooriented contact elements of
Y. There exists a canonical coorientable contact strugyyeon the space of cooriented
contact elements of, which is defined as follows. Let denote the natural projection of
the space of cooriented contact elementE @nto .. For a pointp € S and a cooriented
line L in 7,5, let ¢, 1, denote the cooriented plane described uniquely by the equat
m.({p,r)) = L € T,3. The canonical contact structugg,, on the space of cooriented
contact elements df consists of these planes.

If ¥ is equipped with an arbitrary Riemannian metticthen there is a bundle isomor-
phism® from the tangent bundl&X to the cotangent bundIE*Y:, which is defined fiber-
wise

®,: T,% — T'S
by v — u,(v, —), for anyp € 3. This induces a bundle metric on7*X by

p (1, 02) = 1y (5" (1), B, (02)
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for anyu,, u, € T;%. Therefore, one can define the unit tangent busdle: and the unit
cotangent bundl&7T*Y fiberwise as the collection of unit length vectors and cawexcin
T,% andT, %, respectively.

The space of cooriented contact elements oin be identified with the unit tangent bundle
ST as well as the unit cotangent bundi@*>.. The identification withS7T'Y is given
by taking a cooriented contact elemépt L) to the vecton € ST,%, which is positively
orthonormal ta in 7,3 with respect tq.,,. Similarly, the identification wittb7*X is given
by taking a cooriented contact elemgntL) to the unit covecto®, (v) = i, (v, —) € T, X.
Note that the Liouvillel-form A.,,, onT*Y descends to a contaicform on ST+, denoted
again by)..,,. The canonical contact structugg,, on ST*Y is given by the kernel o,
under the above identification (see for example [8, page 32])

The disk tangent bundlB7'>> and the disk cotangent bundl& ™3 are defined fiberwise as
the collection of vectors and covectors of length less thaegaal to one iff, X andT};%,
respectively. It follows thad(DTY) = ST andd(DT*¥) = ST*X. By the discussion
above, we get aorientation-reversingliffeomorphism betwee®w7*Y and DT'Y. More-
over, the disk cotangent bundle7™*>: equipped with its canonical symplectic structure
Wean = dAcan 1S @n exact symplectic filling of its contact bound@sjii™x:, £..,.)-

3. A GENUS ONELEFSCHETZ FIBRATION ON THE DISK COTANGENT BUNDLE OF AN
ORIENTABLE SURFACE

3.1. Exact symplectic Lefschetz fibrations on cotangent bundlesAn exact symplectic
structure on a smoothrmanifold X with codimensior2 corners is an exact symplectie
formw = d)\ on X such that the Liouville vector field (which is by definitiandual to))

is transverse to each boundary stratum of codimenisiemmd points outwards. Note that
induces a contact form on each boundary stratum(&8idv) becomes an exact symplectic
filling of its contact boundaryd X, ker ) provided that the corners &V are rounded off
(cf. [18, Lemma 7.6]).

Definition 3.1. Suppose thatX, w = d\) is an exact symplectie-manifold with codimen-
sion2 corners. We say that a smooth map X — D? is an exact symplectic Lefschetz
fibration on( X, w) if it the following four conditions are satisfied.

(1) There are finitely many critical pointg, . . ., ¢, of the mapr, all of which belong to
the interior of X. In addition, around each critical point, the smooth map modeled on
the map(z1, z2) — 27 + 23 in complex local coordinates compatible with the oriemtasi
on X andD?, respectively.
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(2) Each fiber of the map| x\ (4,
of (X, w).

(3) The boundary.X is the union of two smooth strata meeting at a codimen3icorner.
More preciselyp X = 9,X U 9, X where

0,X =7 (oD% andd, X = | ] o(z~(x)).

x€D?

77777 ot X\{aq1, ..., q} — D?isasymplectic submanifold

(4) We also require that|,, x : 9,X — 0D? is smooth fibration and is a trivial smooth
fibration overD? neard, X .

The stratum), X admits a surface fibration ovél', while the stratun®, X is a disjoint
union ofm > 0 copies of the solid toru§' x D?, and these strata meet meet each other at
the corner

0,X N X = 0(0,X) = [J(S" x 9D?).
=1
We conclude that X, provided that the corners of are rounded off, acquires an open
book decomposition given by|ox\s : 0X \ B — 0D? whered, X is viewed as a tubular
neighborhood of the binding

B= ]_[(51 x {0}).

Moreover, thel-form ) restricts to a contact form anX whose kernel is a contact structure
supported by this open book decomposition.

Remark 3.2. If we suppress the symplectic formmon X, then a smooth map : X —
D? which satisfies only the conditions (1) and (4) in Definitiodl & called a Lefschetz
fibration on.X.

Definition 3.3. Fori = 1,2, let (X;,w; = d)\;) be an exact symplectit-manifold with
convex boundary. A conformal exact symplectomorphism f(0fp, w;) to (X5, ws) is a
diffeomorphismy) : X; — X, such thaty*\y, = C)\; + dh for some smooth function
h: X; — R, and some real numbéf > 0. If C' = 1, theny is called an exact symplecto-
morphism.

Now, we briefly recall the main result of Johnslin[11], whick wilor appropriately to fit
in with the context of the present article. Débe a closed, connected, orientable surface of
genusg equipped with a Morse functiofi : ¥ — R and a Riemannian metrjc such that
(f, ) is Morse-Smale. Based on this data, Johns constructed ahsyxaplectic Lefschetz
fibration 7, : (E,w) — D? such that there is a conformally exact symplectomorphism
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¢ (F,w) = (DT*Y, weqn). Here we assume that the cornerdodire rounded off, so that
it can be viewed as an exact symplectimanifold with convex boundary.

Remark 3.4. Since any conformal exact symplectomorphism is, in padicwa diffeo-
morphism by definition, we conclude thatis diffeomorphic toD7™3], and we viewr

as a Lefschetz fibration oP7*Y. Moreover, sincd £,w = d\) is a exact symplectic
filling of its contact boundary0F, ker A\) and the conformal exact symplectomorphism
¢ (F,w) = (DT*YE, weayn) satisfiesp*w.,, = Kw for some constank” > 0, the
open book decomposition induced by on the boundary(DT*¥) = ST*Y supports
the canonical contact structugg,,.

In the following, we apply Johns’ method to construct an &xplLefschetz fibration
DT*Y, — D?, with the caveat above, where the regular fiber is a surfaggenfis one
with 4¢g + 4 boundary components. To illustrate the method of constmgcive first give in
Sectior 3.2 a detailed treatment whetis a closed, orientable surface of genus one.

3.2. The case ofl™2. The construction of Johns [11] starts with a Morse funcin— R

or equivalently a handle decomposition®f, which possibly includes twistetthandles.
Instead of giving an explicit Morse function &?, here we describe a handle decompo-
sition of T2 given by two0-handles, four twisted-handles, and twa-handles. The four
1-handles are attached to théhandles as shown in Figué 1. The result is an orientable
surface of genus one with two boundary components. We olftainy attaching the-
handles.

FIGURE 1. The top and bottom rectangular regions arethandles, while
each twisted band connecting them is a twistdthndle.

Based on this handle decompositiori&f we describe a Lefschetz fibratiaghl ™72 — D?
of genus one, using the recipe given explicitlylin|[11, Smac#.3]. We first describe the
regular fiber of the Lefschetz fibratioRT*7T? — D?, as an abstract surface of genus
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one with eight boundary components. We start with two dngjannuli A; and A, corre-
sponding to thé-handles ofl”? as depicted in Figurd 2, where the horizontal rectangular
region labeled by4; represents the annulug by identifying its left-edge with its right-
edge, fori = 1,2. Now, for each twisted-handle of7?, we attach twal-handles to the
union A; U As, which is equivalent to plumbing an annulus. Therefore, Wwenp four
disjoint annuli By, B, B3, By to A; U A,, where each annuluB; is represented by the
vertical rectangular region labeled By in Figure[2, by identifying its top-edge with its
bottom-edge, for; = 1,2,3,4. Note that these six annuli are plumbed together in the
eight overlapping squares in Figliie 2. As a result, we olataiarientable surface of genus
one with eight boundary components, which is the regular fib¢he Lefschetz fibration
DT*T? — D2

Bl BQ B3 B4

ay

Aq

bl bQ b3 b4

az

FIGURE 2. The vanishing cycles,, as, by, bo, b3, by.

Next, we describe the vanishing cycles of this Lefschetafibn. The first two vanishing
cycles are the core circles of; and A,, which we denote by:; and a,, respectively.
The next four vanishing cycles are the core circlesBef B, B3, B4, which we denote
by b1, by, b3, by, respectively (see Figufé 2). The last two vanishing cycleandc, are
obtained by performingimultaneous surgemyf a; U as andb; U by U b3 U by at each point
where these curves meet. This means that any éginmtersects some;, the intersection
point is resolved by a surgery, whetig turns to the left as illustrated in Figuré 3. By
resolving the eight intersection points in Figlie 2, we obécurve with two components,
denoted by, andc, as shown in Figurel4.

The monodromy of the Lefschetz fibratidnZ™*7? — D? is given by the composition of
positive Dehn twists

D(a1)D(as) D(b1)D(bs) D(bs) D(bs) D(c1)D(cs).
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bj

] _J
o -

FIGURE 3. Surgery at a point wherg meets);.

INEEREEE

FIGURE 4. The last two vanishing cycles andc;.

To summarize, we proved the following result.

Proposition 3.5. There exists a Lefschetz fibratidnl™7? =~ 72 x D?> — D?, whose
regular fiber is a surface of genus one with eight boundarymaments. The monodromy
of this Lefschetz fibration is given by the composition oftp@sDehn twists

D(a1)D(ag)D(bl)D(bg)D(bg)D(b4)D(cl)D(02)

where the curves,, as, by, bs, b3, by, c1, co are depicted in Figuregl5 arid 6 on a standard
genus one surface with eight boundary components.

3.3. General case.The discussion in Sectidn 3.2 can be generalized to the daae o
arbitrary closed, connected, orientable surfacef genusg > 0 as follows. There is a
handle decomposition af given by two0-handles2g + 2 twisted1-handles, and twa-
handles, where we attach theéhandles to th@-handles analogous to tlye= 1 case (see
Figure[1). The result is an orientable surface of gepusth two boundary components.
By attaching the-handles, we obtaik.
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U

FIGURE 5. The vanishing cycles,, as, by, bo, b3, by.

FIGURE 6. The vanishing cycles andc,.

In the following, we describe a Lefschetz fibratioh™*> — D? of genus one, based on
this handle decomposition ai. The regular fiber of this Lefschetz fibration is obtained
by plumbing2g + 2 disjoint annuliB;, . . ., By, corresponding to theg + 2 twisted1-
handles, to the two disjoint annuli; and A, corresponding to the-handles, analogous to
theg = 1 case (see Figufé 2). The result is an orientable surfacenofsgene withdg + 4
boundary components.

The vanishing cycles of this Lefschetz fibration are obtdiag follows. Let:; denote the
core circle ofA, for ¢ = 1,2 andb; denote the core circle @8; for j = 1,...,2g + 2. Let
¢, andc, denote the two curves on the fiber obtained by simultaneagesuofa; U as
andb; U by, U - - - U byy10, at each point where they meet, analogous tojthel case (see
Figurel4). Therefore, we have the following result.

Theorem 3.6. For any integerg > 0, the disk cotangent bundie7*Y. admits a Lefschetz
fibration over D?, whose regular fiber is a surface of genus one wigh+ 4 boundary
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components. The monodromy of this Lefschetz fibration enddy the composition of
positive Dehn twists

D(ar)D(az2)D(b1)D(bg) - - - D(bzg+2)D(c1)D(c2)

where the curves,, as, by, bs, . .., byyto, c1, o are depicted in Figurels| 7 arid 8 on a stan-
dard genus one surface witly + 4 boundary components.

The next corollary immediately follows from Theoréml3.6 ptad with Remark314.

Corollary 3.7. For any integerg > 0, the unit cotangent bundIl&7™>: admits an open
book decomposition adapted to the canonical contact siract,,,,, whose page is a genus
one surface witllg + 4 boundary components. The monodromy of this open book decom-
position is given by the composition of positive Dehn twists

D(ay)D(ag)D(by)D(b2) - - - D(bagt2)D(c1)D(c2)
where the curves,, as, by, b, . . ., by, c1, co are depicted in Figurels| 7 and 8.

FIGURE 7. The vanishing cycles,, as, by, by, bs, . . ., bagia.

FIGURE 8. The vanishing cycles andc,.
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Note that forg = 0, 1, the results above are known to be not optimum in the follgwin
sense. Foy = 0, there is gplanar Lefschetz fibrationD7*5? — D?, whose regular fiber
is the annulus and whose monodromy is the square of the ym8&ighn twist along the
core circle. The restriction of this Lefschetz fibration he thoundary gives planar open
book decomposition af7*S? = RP?® adapted td,,,. In other words, the support genus
of (RP?, £..,) is zero, while its binding number is equal to two (¢f. [7]).

As we have already mentioned in the Introduction, the cdrtananifold (ST*%, £ .,)

is not planar forg > 1. Forg = 1, Van Horn-Morris [20] constructed an explicit open
book decomposition adapted t67*1? = T3, ¢..,) whose page is a genus one surface
with threeboundary components. Therefore, the support gen(goE.,,) is one, while

its binding number is less than or equal to three. As obsebyellassot([15], and con-
firmed via different methods by our Corolldry B.7, for apy> 1, the support genus of
(ST*X, &.an) IS One and the binding number is less than or equdlte 4. Therefore the
following question appears naturally:

Question 3.8.What is the binding number ¢67*%, {.,,) for g > 1?

Note thatDT*T? = T? x D? does not admit a planar Lefschetz fibration ol even if we
do not impose any boundary conditions. Suppose, otherthiae] x D? admits a planar
Lefschetz fibration oveD?2. Then we would have a planar strongly symplectically filkabl
contact structure on the boundal{I> x D?) = T. This gives a contradiction sin¢g,,,

is the unique strongly symplectically fillable contact sture on7™ by Eliashberg[4], and
it is non-planar([5].

4. ANOTHER GENUS ONELEFSCHETZ FIBRATION ON THE DISK COTANGENT BUNDLE
OF AN ORIENTABLE SURFACE

4.1. Lefschetz fibrations on disk cotangent bundles.In [10, Proposition 3.1], Ishikawa
constructs a Lefschetz fibration on the diskgentundle of an orientable surfagk based
on the choice of a Morse function ai His construction is based on Lemma 3.2, which in
turn relies on Lemma 2.6 in his paper. We would like to poirtttbat there is an orientation
error in Lemma 2.6 of Ishikawa’s paper. His choice of compiharts in Lemma 2.6 is
orientation-reversindgor the tangent bundle rather than orientation-preservitgerefore,
the Lefschetz fibration he constructs in Proposition 3.1hendisk tangent bundIBT'Y: is
achiral, i.e., all Dehn twists are left-handed. By reversing themtation of the total space
we get a Lefschetz fibration on the disitangenbundle DT*Y.. Thus, we conclude that
Ishikawa in fact constructs Lefschetz fibrationsOf™*>: rather thanDT'>:.

Remark 4.1. Here is another way to see the error in Ishikawa’a paper [E6t.> = S?,
Ishikawa’s method would give a Lefschetz fibration on thé& thmgent bundle af?, which
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is the D?-bundle overS? with Euler number-2. This would imply that theéD2-bundle over
S? with Euler number-2 admits a Stein structure (cf.][2,114]) which, indeed, caditres
to the adjunction inequality of Lisca and Matic [13] for Btsurfaces.

With this caveat in mind, we briefly describe Ishikawa’s domstion of a Lefschetz fibra-
tion on DT*Y. To construct his fibration, Ishikawa starts with agmissible divide”® on
Y. For the purposes of the present paper, a divtdde X is a generic immersion of the
disjoint union of finitely many copies of the unit circle. Avitie P is called admissible if it
is connected, each componentof, P is simply connected an® admits a checkerboard
coloring, which means that one can assign black or whiter¢oleach component af\ P,
such that any two neighboring components are assigned id@potors.

Based on an admissible divideon X, there is a Morse functiorir : ¥ — R associated
with P, which essentially means that the zero level set:otoincides withP, each double
point of P corresponds to a critical point ¢ of index one, and each black (resp. white)
region of> \ P contains an index two (resp. zero) critical pointfef The Morse function
fp,inturn, gives an “almost complexified Morse functiafis : 7% — C which descends
to a Lefschetz fibratiomp : DT*YX — D?. Moreover, generalizing the work of ACampo
[1], Ishikawa describes how to obtain the regular fiber ardtionodromy of the Lefschetz
fibrationrp, based only on the divide.

In the following, by choosing a particular admissible devidon: and applying Ishikawa’s
method, we obtain an explicit Lefschetz fibratib™YX — D? in Theorem 4.5, witl2g+6
vanishing cycles, whose regular fiber is a genus one surfabedw + 4 boundary com-
ponents. To illustrate the method of construction, we firge gn Sectio 4.2 a detailed
treatment wherx is a closed, orientable surface of genus one.

4.2. The case ofl™. In this subsection, by choosing a particular admissibl&dion the
torus7, we construct an explicit Lefschetz fibratidnl™ 72 — D? of genus one. The
admissible divideP we have in mind is the union of the four curves, P, P;, P, onT?
intersecting as in Figufé 9. The complem&#t, P has four connected components each of
which is a disk. We assign a checkerboard coloringto, P as follows. The component
bounded by the bold curves, facing the reader in Figlire 9ssggaed the white color,
which in turn, determines the color of the remaining thremponents ofl \ P, since
neighboring components should have opposite colors. Bars#us choice ofP, there is a
Lefschetz fibratiolDT*T? — D?. The fiber of this Lefschetz fibration can be constructed
via ACampo’s method [1, page 15] as follows: We start witloandabout, as depicted in
Figurel10, for each of the four double points of the divitle
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FIGURE 9. The divideP = P, U P, U P;U P, onT?.

N

A~
o

FIGURE 10. The roundabout: an annulus embeddelinwith its core circles.

For each edge i connecting any two double points, we insert a half-twistaddcon-
necting the corresponding roundabouts. As a result, we gehas one surface with eight
boundary components as shown in Figurke 11.

The monodromy of this Lefschetz fibratidnZ™* 72 — D? is given by the product of eight
positive Dehn twists along the curves, as, 51, B2, 83, B4, 71, Y2- The curvesiy, Bs, B3, B4

are the core circles of the four roundabouts in Figurde 11. cdtlreesa; anda, are given

as the boundary of the two white regions in the checkerboalariog we fixed above,
while the curves; and~, are given as the boundary of the two black regions. We depicte
the curvesay, as, v1, - in Figure[1I2. We summarize our discussion in Propositioh 4.2
below.
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Proposition 4.2. There exists a Lefschetz fibratidnl™7? =~ T2 x D* — D?, whose
regular fiber is a genus one surface with eight boundary camepts. The monodromy of
this Lefschetz fibration is given by the composition of pesiDehn twists

D(a1)D(az)D(B1)D(B2)D(83)D(84) D(71) D(72)

where the curves,, as, 51, B2, 83, B4, 71, 72 are depicted in FigureS11 and2 on a genus
one surface with eight boundary components.

Remark 4.3. There is no a priori reason for the existence of a fiberwiskeamhorphism
between the Lefschetz fibratianT*Y — D? described in Theoref 3.6 and the Lefschetz
fibration DT*Y — D? described in Theoref 4.5 that takes #het 6 vanishing cycles of
the former to that of the latter. In Proposition}4.4, we pdevsuch a diffeomorphism for
the casgy = 1. A general statement for any> 0 is given in Theorerh 416 below, whose
proof is analogous to the= 1 case.

Proposition 4.4. The Lefschetz fibratioh7T*T? — D? described in Proposition 3.5 and
the Lefschetz fibratioWT*T? — D? described in Proposition 4.2 are isomorphic.

Proof. Let m; denote the Lefschetz fibratioR7*72? — D? described in Propositidn 3.5
andm, denote the Lefschetz fibratioR7*7? — D? described in Propositidn 4.2. The
regular fibers ofr; andm, are clearly diffeomorphic as abstract surfaces. In theall
ing, we establish an explicit diffeomorphism between tHdsas which also preserves the
corresponding vanishing cycles.

Recall that the fiber (see Figure 2)of is obtained simply by plumbing the four disjoint
annuli B; U By U B3 U B, onto two disjoint annulid; U A,, along the eight overlapping
squares. Moreover, the core circle of each annulus is amagigycle. In the following,
we show that the fiber (shown in Figurel 12)mfis obtained exactly in the same way.

Fori = 1,2, a neighborhood of the vanishing cyelgon the regular fiber of,, which is
shown in Figuré_12, is indeed an annulus as we depicted agdiigure[ 18. Note that to
emphasize the neighborhoodsmgfanda,, we erased part of the fiber in Figlire 12, which
we indicated by the dotted circles in Figliré 13. Similary,f = 1, 2, 3, 4, a neighborhood
of the curves; on the fiber in Figuré_11 is a roundabout. Now we claim that therfin
Figure[11 (or Figuré12) can be obtained by plumbing the fasjpoht roundabouts, each
one is a neighborhood ¢f;, onto the disjoint union of the neighborhoodsaaf and o,
depicted in Figure_ 13. To prove our claim, we illustrate igle[14 the result of plumbing
a roundabout onto the disjoint neighborhoodspfindc; inside a dotted circle.

Note that inside each one of the four dotted circles in Figiiethere are two disjoint
“twisted squares”, and each plumbing takes place insidebtteese circles. Therefore, to
establish a diffeomorphism between the regular fibet,odnd the regular the fiber af;,
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FIGURE 13. The neighborhoods of the vanishing cyalesandas.

,
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o~ _
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FIGURE 14. Plumbing (bottom) the roundabout (top left) onto thewinn
neighborhoods ofi; andas (top right).

we identify the neighborhood aef; with the annulusd;, which is a neighborhood ef; and
the neighborhood of; with the annulus5;, which a neighborhood df;. Our discussion
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so far shows that the regular fiber of is diffeomorphic to the regular fiber of; by a
diffeomorphism sending; to ¢, for: = 1,2 andg; tob; for j = 1,2, 3, 4.

Finally, recall that the last vanishing cyclesandc, of 7; are obtained by simultaneous
surgery ofa; U a, andb; U b, U bz U by, at each point where they meet. We just observe that
~1 and~, are also obtained by simultaneous surgerypf) o, and 5, U 5y U B3 U By, at
each point where they meet. We conclude that the diffeomsmphbove takes; to ¢; as
well for i = 1, 2. Therefore, there is an isomorphism between the two geneis eischetz
fibrationsry : DT*T? — D? andm, : DT*T? — D2, O

4.3. General case.The discussion in Sectidn 4.2 can be generalized to the daae o
arbitrary closed, connected, orientable surfacef genusg > 0 as follows. We start with
the admissible dividé’ on X given in Figuré 1b.

FIGURE 15. The divideP = P, U P, U ---U Py,49 ON 3.

Just as in the case of genus okie\ P has four connected components, each of which is
a disk andX \ P admits a checkerboard coloring. Based on this choic2,athere is a
Lefschetz fibrationDT*Y~ — D?. The fiber of this Lefschetz fibration can be constructed
as described in Sectidn 4.2: We start with a roundabout fon dauble point of the divide
P, and for each edge iff connecting any two double points, we insert a half-twistadd
connecting the corresponding roundabouts. As a result,ei@ genus one surface with
49 + 4 boundary components, as shown in Fidure 16.

Moreover, the monodromy of this Lefschetz fibratibd™*> — D? is given by the product
of 2¢ + 6 positive Dehn twists along the curves, as, 81, B, . . ., Bag+2, 71, 72. The curves
B, B2, . .., Pag+1, Pag+2 @re the core circles of the roundabouts in Figure 16. Theesury
anda; are given as the boundary of the two white regions in the ambdard coloring we
fixed above, while the curveg and~, are given as the boundary of the two black regions.
We depicted the curves;, o, 71, 7, in Figure[1T.
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FIGURE 16. The vanishing cycleg, ., ..., Bag12.

FIGURE 17. The vanishing cycles,, as, 1, 72.

The proofs of Theoremn 4.5 and Theoréml| 4.6 are completelygaoek to the proofs of
Proposition 4.2 and Propositidn 4.4, respectively. Oneiatwbservation is that; and~,
are obtained as a result of the simultaneous surgety of o, andg; U By U - - - U fag42,
at each point where they meet. The reader can verify thisttiréor the curves depicted
in Figured 16 an@17. This fact can also be verified as follolWe « curves are given as
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the boundaries of the two zero handlessanThe g curves are then formed from the union
of the cores of the one handles joined together in the zerdleanThe result of surgery
between thex and g curves yields a curve isotopic to the boundary of the uniothef
0-handles and-handles, in other words the attaching circles for 2Hgandles. This also
explains how the constructions of Ishikawa and Johns rétettee Morse function ofx in
the same way (see [11, page 69]).

Theorem 4.5. For any integerg > 0, the disk cotangent bundie7™*Y admits a Lefschetz
fibration overD?, whose regular fiber is a genus one surface wigh+ 4 boundary com-
ponents. The monodromy of this Lefschetz fibration is giyehdcomposition of positive
Dehn twists

D(a)D(ag)D(B1)D(Ba) - - D(Bagr2) D(71) D(72)

where the curveg, fa, . .., fag+1, S2g+2 @re shown in Figuré 16 and;, as, 1,7, are
shown in Figure 117.

Theorem 4.6. For any integerg > 0, the Lefschetz fibratio®T*> — D? described
in Theoren{3J6 and the Lefschetz fibratibi™Y — D? described in Theorefm 4.5 are
isomorphic.

The next result immediately follows from Theoréml4.6 anddllary([3.7.

Corollary 4.7. For any integerg > 0, the open book decomposition 8f™*Y. induced by
the Lefschetz fibratiomT*Y — D? described in Theorem 3.6 is isomorphic to the open
book decomposition a$i7*Y. induced by the Lefschetz fibratiail ™Y~ — D? described in
Theoreni 45. Therefore, the open book decompositia$iZort induced by the Lefschetz
fibration DT*Y — D? described in Theorefm 4.5 suppo¢ts, as well.

Finally, we would like to list some questions that arise frtme discussion in this pa-
per.

1) Ishikawa does not give any information about the contaattures onS7*>: adapted
to the open book decompositions which are filled by the varioefschetz fibrations he
constructs onDT*Y, depending on different possible choices of an admissitvidel on
Y. Our Corollanf 4.7 shows that for a certain admissible dhod:, Ishikawa'’s open book
decomposition orb7T*Y supports the canonical contact structggg,. Is it true that any
open book decomposition ¢¥il™*Y given by Ishikawa’s construction suppo¢ts,,”?

2) Is the Lefschetz fibration oR 7Y of Johns (which uses the standard Morse function on
the surface) an explicit stabilization of the Lefschetzdthon in this paper? Is there a cal-
culus relating stabilizations and handle slides of Morsefions onX with stabilizations
and Hurwitz moves on Lefschetz fibrations O™ ¥?
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3) Isittrue that the Lefschetz fibration that Johns conssran D7*Y. is isomorphic to that
Ishikawa constructs for all Morse functions & not just the specific Morse function that
gives the minimal genus Lefschetz fibration?

4) Is the number of boundary components in this article maiamongst all genus one
Lefschetz fibrations built from the constructions of Jolstgkawa varying over different
Morse functions on the surface?
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