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ABSTRACT. In [5], Gompf describes a Stein domain structure on the diskcotangent bun-
dle of any closed surfaceS, by a Legendrian handlebody diagram. We prove that Gompf’s
Stein domain is symplectomorphic to the disk cotangent bundle equipped with its canonical
symplectic structure and the boundary of this domain is contactomorphic to the unit cotan-
gent bundle ofS equipped with its canonical contact structure. As a corollary, we obtain a
surgery diagram for the canonical contact structure on the unit cotangent bundle ofS.

1. INTRODUCTION

Let S be a closed, connected and smooth surface, which we do not assume to be ori-
entable. The disk cotangent bundleDT ∗S of S carries the canonical symplectic structure
ωcan = dλcan, and the unit cotangent bundle∂(DT ∗S) = ST ∗S carries the canonical con-
tact structureξcan = ker(λcan|ST ∗S), whereλcan is the Liouville one form onT ∗S. In [5],
Gompf showed thatDT ∗S admits the structure of a Stein domain, by explicitly exhibiting
DT ∗S as a Legendrian handlebody diagram.

Here we prove that Gompf’s Stein domain is symplectomorphicto (DT ∗S, ωcan) and the
boundary contact3-manifold is contactomorphic to(ST ∗S, ξcan). As a corollary, we obtain
a contact surgery diagram for(ST ∗S, ξcan), using a technique described by Ding and Geiges
[2, Theorem 5].

Theorem 1.1. (a) Suppose thatΣg is a closed, connected, smooth and orientable surface of
genusg ≥ 1. Then the Stein handlebody diagram depicted in Figure 1 is symplectomorphic
to (DT ∗Σg, ωcan) and its boundary is contactomorphic to(ST ∗Σg, ξcan).

(b) Suppose thatNk is a closed, connected, smooth and nonorientable surface ofgenus
k ≥ 1, i.e.,Nk = #kRP

2. Then the Stein handlebody diagram depicted in Figure 2 is sym-
plectomorphic to(DT ∗Nk, ωcan) and its boundary is contactomorphic to(ST ∗Nk, ξcan).

Remark 1.2. (i) The facts that the Stein handlebody diagram depicted in Figure 1 is diffeo-
morphic toDT ∗Σg and the Stein handlebody diagram depicted in Figure 2 is diffeomorphic
toDT ∗Nk were already proven by Gompf [5].
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FIGURE 1. Stein handlebody
diagram forDT ∗Σg with 2g
one-handles
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FIGURE 2. Stein handlebody
diagram for DT ∗Nk with k
one-handles

(ii) The unit cotangent bundleST ∗
S
2 is diffeomorphic to the real projective spaceRP3,

andξcan is the unique tight contact structure onRP3, up to isotopy (cf. [8]). Moreover,
McDuff [12] showed that any minimal symplectic filling of(RP3, ξcan) is diffeomorphic to
DT ∗

S
2 and Hind [7] showed thatDT ∗

S
2 is the unique Stein filling up to Stein homotopy.

Furthermore, Wendl [16, Corollary 9.44] (based on his earlier work [15]) showed that any
minimal strong symplectic filling of(RP3, ξcan) is symplectic deformation equivalent to
(DT ∗

S
2, ωcan). A Stein structure onDT ∗(S2), which is diffeomorphic to the disk bundle

over the2-sphere with Euler number−2, can be described by a single Stein handle attach-
ment along a trivial Legendrian knot in the standard contact3-sphere. The boundary of this
Stein domain is indeed contactomorphic to(ST ∗(S2), ξcan).
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(iii) The unit cotangent bundleST ∗
T
2 is diffeomorphic to the3-torusT3 and Eliashberg [3]

showed thatξcan is the unique strongly symplectically fillable contact structure onT3, up
to contactomorphism. Moreover, according to Wendl [15], any minimal strong symplectic
filling of (T3, ξcan) is symplectic deformation equivalent to(DT ∗

T
2 ∼= T

2 × D
2, ωcan).

(iv) The unit cotangent bundleST ∗
RP

2 is diffeomorphic to the lens spaceL(4, 1) and
ξcan is the unique universally tight contact structure inL(4, 1), up to contactomorphism.
Moreover, McDuff [12] showed that(L(4, 1), ξcan) has two minimal symplectic fillings
up to diffeomorphism: the disk cotangent bundleDT ∗

RP
2, which is a rational homology

4-ball and the disk bundle over the sphere with Euler number−4. Furthermore, Hind
[7] showed that the uniqueness of the Stein fillings in each diffeomorphism class, up to
Stein homotopy. More recently, Plamenevskaya and Van Horn-Morris [14] showed that, in
each diffeomorphism class, there is a unique minimal symplectic filling, up to symplectic
deformation, based on the work of Wendl [15].

2. UPGRADING THE DISK COTANGENT BUNDLE TO AWEINSTEIN, AND HENCE STEIN

FILLING

Let q1, q2 denote local coordinates onS, andp1, p2 denote dual coordinates for the cotan-
gent fibers. Then we haveλcan = Σ pidqi, andωcan = dλcan = Σ dpi ∧ dqi. It follows that
Σ pi∂pi is a Liouville vector field for the symplectic manifold(DT ∗S, ωcan) transversely
pointing out of∂(DT ∗S), which shows that(DT ∗S, ωcan) is an exact symplectic filling of
its contact boundary(ST ∗S, ξcan). Now we briefly explain how this exact symplectic fill-
ing can be upgraded to the canonical Weinstein filling of(ST ∗S, ξcan) as described in [1,
Example 11.12 (2)]. Fix any Riemannian metric onS and a Morse functionf : S → R.
LetX = Σ pi∂pi +XF , whereXF is the Hamiltonian vector field ofF = λcan(∇f). Then,
provided thatf is small enough,X is Liouville for ωcan and gradient-like for the Morse
functionφ(v) = 1/2‖v‖π(v)+f ◦π(v), whereπ denotes the bundle projectionDT ∗S → S.
Thus,(DT ∗S, ωcan, X, φ) is a Weinstein filling of(ST ∗S, ξcan). Therefore, according to [1,
Theorem 13.5],DT ∗S admits a Stein domain structure(J, φ) such that the Weinstein do-
main associated to(DT ∗S, J, φ) is homotopic to(DT ∗S, ωcan, X, φ). The main goal of this
paper is to show that such a Stein domain structure onDT ∗S is given by the handlebody
diagrams in Figures 1 and 2, up to isotopy ofDT ∗S.

3. WEINSTEIN HOMOTOPIES

3.1. Orientable case. In this section we give a proof of Theorem 1.1 (a).
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Proof. Let (J0, φ0) denote the Stein structure onDT ∗Σg given by the diagram in Figure 1.
We first observe thatc1(DT ∗Σg, J0) = 0 since the rotation number of the2-handle is zero
(cf. [5, Proposition 2.3]). On the other hand, ifJcan denotes an almost complex structure on
DT ∗Σg which is compatible withωcan, thenc1(DT ∗Σg, Jcan) = 0 as well. In fact, any exact
filling of (ST ∗Σg, ξcan) has vanishing first Chern class [10, Theorem 1.4]. Note thatJcan
belongs to the unique homotopy class of almost complex structures onDT ∗Σg compatible
with ωcan. Moreover, sinceH2(DT ∗Σg;Z) ∼= Z has no2-torsion, the homotopy class
of an almost complex structure onDT ∗Σg is determined by its first Chern class (see, for
example, [6, page 437]). We conclude that the integrable almost complex structureJ0
is homotopic to theωcan-compatible almost complex structureJcan on DT ∗Σg. Now, by
takingV = DT ∗Σg, ω = ωcan, X andφ as defined in Section 2, andJ = J0, we deduce
by Theorem 3.1 below that the Stein handlebody diagram depicted in Figure 1 is Weinstein
homotopic the canonical one, up to isotopy ofDT ∗Σg.

Theorem 3.1. [1, Theorem 13.8]Let (V, ω,X, φ) be a Weinstein manifold. LetJ be an in-
tegrable complex structure onV which is homotopic to an almost complex structure com-
patible withω. Then there exists a diffeomorphismh : V → V isotopic to the identity
such that the functionφ ◦ h is J-convex and the Weinstein structure associated to the Stein
structure(h∗J, φ) is homotopic to(V, ω,X, φ), with fixed functionφ.

Since Weinstein homotopic manifolds are symplectomorphic[1, Corollary 11.21], it fol-
lows that the Stein handlebody diagram depicted in Figure 1 is indeed symplectomorphic
to (DT ∗Σg, ωcan). Therefore, the boundary the Stein handlebody diagram in Figure 1 is
contactomorphic to(ST ∗Σg, ξcan). �

Remark 3.2. Let Wg be the Stein domain with boundary described by the Legendrian
handlebody diagram depicted in Figure 1 and letξg denote the contact structure induced on
∂Wg. An independent3-dimensional proof of the fact that(∂Wg, ξg) is contactomorphic
to (ST ∗Σg, ξcan) can be given as follows. Note that∂Wg is the circle bundle overΣg with
Euler number2g − 2, which is diffeomorphic to the unit cotangent bundleST ∗Σg. Let πg
denote this circle fibration∂Wg → Σg. As shown by Lisca and Stipsicz [11, Lemma 2.1],
ξg has negative twisting number, and thus it is horizontal, i.e., ξg is isotopic to a contact
structure transverse to the circle fibers, by Honda’s classification [9, Theorem 2.11] of tight
contact structures on circle bundles over surfaces. It follows thatξg is universally tight
by the work of Giroux [4, Proposition 2.4 (c)] and Honda [9, Lemma 3.9]. As a matter
of fact, the twisting number ofξg is equal to−1 since there is a Legendrian knotL in
(∂Wg, ξg) as depicted in Figure 3, which is isotopic to a fiber ofπg (see [11, pages 289-
290]). On the other hand,ξcan onST ∗Σg is tangent to the fibers of the natural circle fibration
ST ∗Σg → Σg, by definition. Nevertheless, it can be made horizontal by anarbitrarily small
isotopy [4, Proposition 1.4] and thusξcan is also universally tight. Moreover,ξcan has
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twisting number−1, by [4, Lemma 3.6]. SinceST ∗Σg is diffeomorphic to∂Wg and there
is a unique isomorphism class of universally tight contact structures on∂Wg with twisting
number−1 (cf. [4, Theorem 3.1 (c)]), we conclude that(∂Wg, ξg) is contactomorphic to
(ST ∗Σg, ξcan) for anyg ≥ 1.

L

FIGURE 3. The Legendrian knotL linking the2-handle at the bottom of Figure 1

3.2. Nonorientable case. In this section we give the proof of Theorem 1.1 (b).

Proof. Let Vk be the Stein domain with boundary described by the Legendrian handlebody
diagram depicted in Figure 2. As observed in [5, page 680], one can check via Kirby
calculus thatVk is diffeomorphic to the disk bundle overNk with Euler numberk − 2 =
−χ(Nk), which is the disk cotangent bundleDT ∗Nk. It follows that∂Vk is the circle bundle
overNk with Euler numberk − 2, which is indeed diffeomorphic toST ∗Nk.

Let ξk denote the contact structure on∂Nk induced by the Stein handlebody diagram in
Figure 2. We first observe thatξk has twisting number is−1, which follows from the fact
that there is a Legendrian unknotK in (∂Nk, ξk) which is isotopic to a fiber of the circle
fibration of∂Vk overNk, just as in the orientable case discussed above. Note that there is
a double coverΣk−1 → Nk and hence by pulling back the circle fibration and the contact
structure we have a contact double cover(Mk, ξ̃k) → (∂Vk, ξk), whereMk is the circle
bundle overΣk−1 with Euler number2k−4. The twisting number of̃ξk is also−1 and thus
(Mk, ξ̃k) is universally tight just as in Remark 3.2. Therefore, we conclude that(∂Vk, ξk) is
universally tight as well, since it has a contact double cover which is universally tight.

On the other hand,(ST ∗Σk−1, ξcan) is the contact double cover of(ST ∗Nk, ξcan), which
implies in particular that(ST ∗Nk, ξcan) is universally tight. Moreover, according to [4,
Lemma 3.6], the twisting number of(ST ∗Nk, ξcan) is −1, just as in the orientable case.
Now we simply observe that the contact double cover(ST ∗Σk−1, ξcan) of (ST ∗Nk, ξcan)

is contactomorphic to the contact double cover(Mk, ξ̃k) of (∂Vk, ξk) by the proof given
in Remark 3.2. Moreover, we may assume that this contactomorphism respects the circle
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fibrations (cf. [4, Section 3 E]) and hence yields a contactomorphism of(ST ∗Nk, ξcan) and
(∂Vk, ξk) after taking the quotients. This finishes the proof of our claim that (∂Vk, ξk) is
contactomorphic to(ST ∗Nk, ξcan).

In the following, we prove the first assertion in Theorem 1.1 (b). LetJ0 denote the Stein
structure onDT ∗Nk given by the diagram in Figure 2, and letJcan denote an almost com-
plex structure compatible withωcan. Note that there is a unique homotopy class ofωcan-
compatible almost complex structures and we claim thatJ0 belongs to that class. Recall
that almost complex structures onDT ∗Nk correspond bijectively toSpinc structures. We
denote bysJ theSpinc structure onDT ∗Nk associated to an almost complex structureJ
(see, for example, [13, Chapter 6]). Note that there is an injective map

Spinc(DT ∗Nk)
ψ

−→ Spinc(ST ∗Nk)

such that for any almost complex structureJ on DT ∗Nk, we haveψ(sJ) = tξJ , where
ξJ is the oriented2-plane field onST ∗Nk induced byJ , andtξJ is theSpinc structure
associated toξJ . By the second assertion in Theorem 1.1 (b), which we proved above,
we havetξJ0 = tξJcan

, and thussJ0 = sJcan, sinceψ is injective. This implies thatJ0 is
homotopic toJcan, proving our claim. Now, the first assertion in Theorem 1.1 (b) follows
by Theorem 3.1 just as in the orientable case we discussed above. �

4. SURGERY DIAGRAMS FOR THE CANONICAL CONTACT STRUCTURES

As explained in [2, Theorem 5], each1-handle in a Stein handlebody diagram can be re-
placed by a contact(+1)-surgery along a Legendrian unknot, to obtain a surgery diagram
of the contact boundary of the Stein handlebody. Therefore,as an immediate corollary to
Theorem 1.1, we obtain a surgery diagram for the contact3-manifold(ST ∗S, ξcan) for any
closed surfaceS. In Figure 4, we depicted the contact surgery diagram forξcan onST ∗Σg
for g ≥ 1. For g = 0, see Remark 1.2 (ii). In Figure 5, we depicted the contact surgery
diagram forξcan onST ∗Nk for k ≥ 1.

Remark 4.1. In Figure 6, we depicted a simple surgery diagram for(ST ∗(RP2), ξcan),
without any contact(+1)-surgeries. The contact3-manifold described by the surgery di-
agram in Figure 5 fork = 1 is contactomorphic to the one in Figure 6. As smooth3-
manifolds the diffeomorphism between them can be given by a sequence of Kirby moves.
Namely, after converting the diagram in Figure 5 fork = 1 into a smooth surgery diagram,
we just perform a Rolfsen twist along the0-framed unknot and then blow-down the result-
ing +1-framed unknot to obtain a−4-framed unknot, which is the usual smooth diagram
of L(4, 1). It is plausible that the aforementioned contactomorphismcan be shown directly
by using the set of moves in contact surgery diagrams introduced by Ding and Geiges [2].
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FIGURE 4. Surgery diagram for the canonical contact structureξcan on the
unit cotangent bundle ofΣg, where the dashed box is repeatedg − 1 times,
for g ≥ 1
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−1

+1

+1

FIGURE 5. Surgery diagram for the canonical contact structureξcan on the
unit cotangent bundle ofNk, where the dashed box is repeatedk − 1 times,
for k ≥ 1

−1

FIGURE 6. A simple surgery diagram for(ST ∗(RP2), ξcan)
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DEPARTMENT OFMATHEMATICS, KOÇ UNIVERSITY, ISTANBUL, TURKEY

E-mail address: bozbagci@ku.edu.tr


	1. Introduction
	2. Upgrading the disk cotangent bundle to a Weinstein, and hence Stein filling
	3. Weinstein homotopies
	3.1. Orientable case
	3.2. Nonorientable case

	4. Surgery diagrams for the canonical contact structures
	References

