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ABSTRACT. We describe an explicit open book decomposition adapted to the canonical

contact structure on the unit cotangent bundle of a closed surface.

1. INTRODUCTION

Let S denote a closed surface which is not necessarily orientable. Let π denote the pro-

jection of the bundle of cooriented lines tangent to S onto S. For a point q ∈ S and a

cooriented line u in TqS, let ξ(q,u) denote the cooriented plane described uniquely by the

equation π∗(ξ(q,u)) = u ∈ TqS. The canonical contact structure ξcan on the bundle of

cooriented lines tangent to S consists of these planes (see, for example, [15]).

If S is equipped with a Riemannian metric, then the bundle of cooriented lines tangent to

S can be identified with the unit cotangent bundle ST ∗S, and ξcan is given by the kernel

of the Liouville 1-form λcan under this identification. Moreover, the disk cotangent bundle

DT ∗S equipped with its canonical symplectic structure ωcan = dλcan is a minimal strong

symplectic filling of the contact 3-manifold (ST ∗S, ξcan).

In this article, we describe an explicit abstract open book decomposition adapted to the

contact 3-manifold (ST ∗S, ξcan), in the sense of Giroux [10]. In the following, we use Σg to

denote the orientable closed surface of genus g and Nk to denote the non-orientable closed

surface obtained by the connected sum of k copies of the real projective plane RP
2.

In Theorem 3.1 (resp. Theorem 3.4), for any g ≥ 1, we describe an open book adapted to

(ST ∗Σg, ξcan), whose page is a genus g surface with 2g + 2 (resp. g + 2) boundary com-

ponents and we give an explicit factorization of its monodromy into a product of positive

Dehn twists. In Corollary 3.5, we also describe an exact symplectic Lefschetz fibration over

D2, whose total space is symplectomorphic to (DT ∗Σg, ωcan), up to completion.

In Theorem 3.7, for any k ≥ 1, we describe an open book adapted to (ST ∗Nk, ξcan),
whose page is a planar surface with 2k + 2 boundary components and we give an explicit

factorization of its monodromy into a product of positive Dehn twists.

The first author was partially supported by JSPS KAKENHI Grant Number 15J05214.

1



2 TAKAHIRO OBA AND BURAK OZBAGCI

The unit cotangent bundle ST ∗Σ0 is diffeomorphic to the real projective space RP
3, and

ξcan is the unique tight contact structure in RP
3, up to isotopy (cf. [12]). It is well-known

(see, for example [8]) that (RP3, ξcan) has an adapted open book whose page is the annulus

and whose monodromy is the square of the positive Dehn twist along the core circle of the

annulus. Moreover, McDuff [17] showed that any minimal symplectic filling of (RP3, ξcan)
is diffeomorphic to DT ∗Σ0.

The unit cotangent bundle ST ∗Σ1 is diffeomorphic to the 3-torus T 3 and Eliashberg [5]

showed that ξcan is the unique strongly symplectically fillable contact structure in T 3, up

to contactomorphism. In his thesis [22], Van Horn-Morris constructed an explicit open

book with genus one pages adapted to (T 3, ξcan). Note that (T 3, ξcan) can not be supported

by a planar open book by a theorem of Etnyre [7]. Moreover, according to Wendl [24],

any minimal strong symplectic filling of (T 3, ξcan) is symplectic deformation equivalent to

(DT ∗Σ1
∼= T 2 ×D2, ωcan).

The unit cotangent bundle ST ∗N1 is diffeomorphic to the lens space L(4, 1) and ξcan is the

unique universally tight contact structure in L(4, 1), up to contactomorphism. Note that

the canonical contact structure on L(4, 1) viewed as a singularity link is isomorphic to ξcan
defined as above. It is well-known (see, for example [8]) that (L(4, 1), ξcan) has an adapted

open book whose page is the 4-holed sphere and whose monodromy is the product of

positive Dehn twists along four curves each of which is parallel to a boundary component.

Moreover, McDuff [17] showed that (L(4, 1), ξcan) has two minimal symplectic fillings up

to diffeomorphism: (i) the disk cotangent bundle DT ∗N1, which is a rational homology

4-ball and (ii) the disk bundle over the sphere with Euler number −4.

We would like to point out that in an unpublished expository article [16], Massot argues

that, for all g ≥ 2, the contact 3-manifold (ST ∗Σg, ξcan) has an adapted open book with

genus one pages but he does not describe its monodromy. The interested reader can turn to

[4] and [9] for related material.

2. EXACT SYMPLECTIC LEFSCHETZ FIBRATIONS

Suppose that W is a smooth 4-manifold with nonempty boundary equipped with an ex-

act symplectic form ω = dα such that the Liouville vector field, which is by definition

ω-dual to α, is transverse to ∂W and points outwards. Then (W,ω) is called an exact

symplectic 4-manifold with ω-convex boundary and it is also called an exact symplectic

filling of the contact 3-manifold (∂W, ker(α|∂W )) if the contact boundary is desired to be

emphasized.

The definition above can be extended to smooth manifolds with corners as follows (cf.

[21, Section 7a]). Let W be a smooth 4-manifold with codimension 2 corners. An exact
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symplectic structure on W is given by a symplectic 2-form ω = dα on W such that the

Liouville vector field (again defined as ω-dual to α) is transverse to each boundary stratum

of codimension 1 and points outwards. It follows that α induces a contact form on each

boundary stratum. Moreover, if the corners of W are rounded off (see [21, Lemma 7.6]), it

becomes an exact symplectic filling of its contact boundary.

Definition 2.1. An exact symplectic Lefschetz fibration on an exact symplectic 4-manifold

(W,ω) with codimension 2 corners is a smooth map π : (W,ω) → D2 satisfying the

following conditions:

• The map π has finitely many critical points p1, . . . , pk in the interior of W such that

around each critical point, π is modeled on the map (z1, z2) → z21 + z22 in complex

local coordinates compatible with the orientations.

• Every fiber of the map π|W\{p1,...,pk} : W \ {p1, . . . , pk} → D2 is a symplectic

submanifold.

• ∂W consists of two smooth boundary strata ∂vW (the vertical boundary) and ∂hW
(the horizontal boundary) meeting at a codimension 2 corner, where

∂vW = π−1(∂D2) and ∂hW =
⋃

z∈D2

∂(π−1(z)).

We require that π|∂vW : ∂vW → ∂D2 is smooth fibration and π is a trivial smooth

fibration over D2 near ∂hW .

The vertical boundary ∂vW is a surface fibration over the circle and the horizontal boundary

∂hW is a disjoint union of some number of copies of S1 ×D2. The vertical and horizontal

boundaries meet each other at the corner

∂vW ∩ ∂hW = ∂(∂hW ) =
∐

(S1 × ∂D2).

Therefore, after rounding off the corners of W , its boundary ∂W acquires an open book

decomposition given by π|∂W\B : ∂W \ B → ∂D2, where ∂hW is viewed as a tubular

neighborhood of the binding B :=
∐
(S1 × {0}). Moreover, α restricts to a contact form

on ∂W whose kernel is a contact structure supported by this open book.

Remark 2.2. A smooth Lefschetz fibration on a smooth 4-manifold W with codimension

2 corners, is a smooth map π : W → D2 which satisfies the first and the last conditions

listed in the Definition 2.1.

Next, we briefly recall (see [21, Section 16], [11, Chapter 8]) how the topology of the total

space of an exact symplectic Lefschetz fibration

π : (W,ω) → D2
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is described using a distinguished basis of vanishing paths in D2.

Without loss of generality, we can assume that D2 is the unit disk D in C. For each critical

value z ∈ D of the fibration π, the fiber π−1(z) is called a singular fiber, while the other

fibers are called regular. Throughout this paper, we will assume that a regular fiber is

connected and each singular fiber contains a unique critical point. By setting z0 = 1 ∈ ∂D,

the regular fiber F = π−1(z0), which is a symplectic submanifold of (W,ω), serves as a

reference fiber in the discussion below. We call z0 the base point.

For any critical value z ∈ int D, a vanishing path is an embedded path γ : [0, 1] → D

such that γ(0) = z0 and γ(1) = z ∈ D. To each such path, one can associate its Lefschetz

thimble ∆γ , which the unique embedded Lagrangian disk in (W,ω) such that π(∆γ) =
γ([0, 1]) and π(∂∆γ) = z0. The boundary ∂∆γ of the Lefschetz thimble is therefore an

(exact) Lagrangian circle in (F, ω|F ). This circle is called a vanishing cycle since under a

parallel transport along γ, it collapses to the unique singular point on the fiber π−1(z).

A distinguished basis of vanishing paths is an ordered set of vanishing paths (γ1, . . . , γk)
(one for each critical value of π) starting at the base point z0 and ending at a critical value

such that γi intersects γj only at z0 for i 6= j. Note that there is a natural counterclockwise

ordering of these paths, by assuming that the starting directions of the paths are pairwise

distinct. Let δi denote the vanishing cycle in F corresponding to the vanishing path γi,
whose end point—a critical value—is labeled as zi.

Now consider a small loop, oriented counterclockwise, around the critical value zi, and

connect it to the base point z0 using the vanishing path γi. One can consider this loop

as a loop ai around zi passing through z0 and not including any other critical values in its

interior. It is a classical fact that π−1(ai) is a surface bundle over ai, which is diffeomorphic

to

(F × [0, 1])/((x, 1) ∼ (D(δi)(x), 0)

where D(δi) denotes the positive Dehn twist along the vanishing cycle δi ⊂ F .

Similarly, π−1(∂D) is an F -bundle over S1 = ∂D which is diffeomorphic to

(F × [0, 1])/((x, 1) ∼ (ψ(x), 0)

for some self-diffeomorphism ψ of the fiber F preserving ∂F pointwise. The map ψ is

called the geometric monodromy and computed via parallel transport using any choice of

a connection on the bundle. Note that the isotopy class of ψ is independent of the choice of

the connection. It follows that

ψ = D(δk)D(δk−1) · · ·D(δ1) ∈Map(F, ∂F ),
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where Map(F, ∂F ) denotes the mapping class group of the surface F . The product of

positive Dehn twists above is called a monodromy factorization or a positive factorization

of the monodromy ψ of the Lefschetz fibration π.

Note that the vanishing cycle for each singular fiber is determined by the choice of a vanish-

ing path ending at the corresponding critical value. Therefore a different basis of vanishing

paths (with the same rules imposed as above) induce a different factorization of the mon-

odromy ψ. Nevertheless, any two distinguished bases of vanishing paths are related by

a sequence of transformations—the Hurwitz moves. An elementary Hurwitz move is ob-

tained by switching the order of two consecutive vanishing paths as shown in Figure 1

keeping the other vanishing paths fixed. This will have the following affect on the ordered

set of vanishing cycles

(δ1, . . . , δi−1, δi, δi+1, δi+2, . . . , δk) → (δ1, . . . , δi−1, δi+1, D(δi+1)(δi), δi+2, . . . , δk),

which is also called an elementary Hurwitz move. In general a Hurwitz move is any com-

position of elementary Hurwitz moves and their inverses.

FIGURE 1. An elementary Hurwitz move

If one chooses a different base point on ∂D to begin with, then the monodromy of the Lef-

schetz fibration takes the form ϕψϕ−1, where ϕ is the appropriate element ofMap(F, ∂F ),
obtained by parallel transport. In this case, the monodromy factorization appears as

ϕψϕ−1 = ϕ
(
D(δk)D(δk−1) · · ·D(δ1)

)
ϕ−1

= ϕD(δk)ϕ
−1ϕD(δk−1)ϕ

−1ϕ · · ·ϕ−1ϕD(δ1)ϕ
−1

= D(ϕ(δk))D(ϕ(δk−1)) · · ·D(ϕ(δ1)),

where the last equality follows by the fact that the conjugation ϕD(δ)ϕ−1 of a positive

Dehn twist D(δ) is isotopic to the positive Dehn twist D(ϕ(δ)).

Conversely (cf. [21, Lemma 16.9]),

Lemma 2.3. Let (δ1, . . . , δk) be an ordered collection of embedded (Lagrangian) circles on

an exact symplectic surfaceF with nonempty boundary. Choose a base point ∗ on ∂D2, and
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a distinguished basis of vanishing paths (γ1, . . . , γk) starting at ∗. Then there is an exact

symplectic Lefschetz fibration π : (W,ω) → D2 whose critical values are γ1(1), . . . , γk(1),
under which δi corresponds to the vanishing cycle for the path γi, where π−1(∗) = F as

symplectic manifolds. Moreover, this fibration is trivial near ∂hW .

Definition 2.4. A conformal exact symplectomorphism between two exact symplectic 4-

manifolds (W1, ω1 = dα1) and (W1, ω2 = dα2) is a diffeomorphism φ : W1 → W2 such

that φ∗α2 = Kα1 + df for some smooth function f : W1 → R, and some real number

K > 0. If K = 1, then φ is called an exact symplectomorphism.

Remark 2.5. Definition 2.4 also applies to maps between exact symplectic 4-manifolds

with codimension 2 corners.

Lemma 2.6. Suppose that π : (W,ω) → D2 is an exact symplectic Lefschetz fibration

whose ordered set of vanishing cycles is given by

(δ1, . . . , δi−1, δi, δi+1, δi+2, . . . , δk)

with respect to some distinguished basis of vanishing paths. Then there is an exact sym-

plectic Lefschetz fibration π̃ : (W̃ , ω̃) → D2 whose ordered set of vanishing cycles is given

by

(δ1, . . . , δi−1, δi+1, D(δi+1)(δi), δi+2, . . . , δk)

with respect to some distinguished basis of vanishing paths, such that π and π̃ are isomor-

phic through an exact symplectomorphism φ : (W,ω) → (W̃ , ω̃).

Proof. By Lemma 2.3, there is an exact symplectic Lefschetz fibration π̃ : (W̃ , ω̃) → D2

whose ordered set of vanishing cycles is given by

(δ1, . . . , δi−1, δi+1, D(δi+1)(δi), δi+2, . . . , δk)

with respect to the distinguished basis of vanishing paths of π. Now we apply an elementary

inverse Hurwitz move on this distinguished basis of vanishing paths of π̃, so that the ordered

set of vanishing cycles of π̃ agrees, up to isotopy, with the ordered set of vanishing cycles

of π. Note that we keep the fibration π̃ fixed, while modifying its distinguished basis of

vanishing paths.

It follows that π and π̃ are two exact symplectic Lefschetz fibrations whose ordered set

of vanishing cycles are isotopic. The result follows by the fact that an exact symplectic

Lefschetz fibration is uniquely determined—up to isomorphism via an exact symplecto-

morphism of its total space—by its regular fiber and the isotopy class of its ordered set of

vanishing cycles. �
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It is well-known that a positive stabilization of a smooth Lefschetz fibration is a smooth

Lefschetz fibration. In the following we briefly explain positive stabilizations of exact

symplectic Lefschetz fibrations (cf. [18, Appendix A]).

A positive stabilization of an exact symplectic Lefschetz fibration π : (W,ω) → D2 along

a properly embedded (Lagrangian) arc β in (F, ω|F ), where F is the reference regular fiber

of π as above, is another an exact symplectic Lefschetz fibration π′′ : (W ′′, ω′′) → D2

defined as follows.

First, we attach a 4-dimensional Weinstein 1-handle to (W,ω) along the two endpoints of

β ⊂ F ⊂ ∂W such that ω extends over the 1-handle as an exact symplectic form ω′ = dα′

to obtain an exact symplectic Lefschetz fibration π′ : (W ′, ω′) → D2 which agrees with

π when restricted to (W,ω). In order to see this, we view the 4-dimensional Weinstein

1-handle as a thickening D2 ×H2
1 of the 2-dimensional Weinstein 1-handle H2

1 , where D2

is the base disk of the fibration equipped with the standard symplectic structure. In other

words, we extend each fiber of π by attaching a Weinstein 1-handle H2
1 , so that the exact

symplectic form ω extends fiberwise. In particular, the reference regular fiber F ′ = F ∪H2
1

of π′ is obtained by attachingH2
1 to F along the endpoints of β. Let β ′ ⊂ (F ′, ω′|F ′) denote

the closed Lagrangian curve obtained from β by gluing in the core circle of H2
1 .

Next, we attach a 4-dimensional 2-handle to (W ′, ω′) along the curve β ′ ⊂ F ′ ⊂ ∂W ′

with framing −1 relative to its fiber framing. It is a classical fact ([11, Section 8.2]) that

the result is a smooth Lefschetz fibration π′′ : W ′′ → D2, which has one more critical

point (with vanishing cycle β ′) in addition to those of π′ : (W ′, ω′) → D2. Moreover,

by the Legendrian Realization Principle [12], β ′ can be realized as a Legendrian curve on

F ′ in the contact boundary (∂W ′, ker(α′)) so that its contact framing agrees with its fiber

framing. It follows that the aforementioned “Lefschetz” 2-handle can be considered as a

Weinstein 2-handle (see, for example, [20, Section 7.2]) and hence W ′′ admits an exact

symplectic form ω′′ which restricts to ω′ on W ′.

All we have to argue now is that ω′′ restricts to a symplectic structure on the fibers of the

smooth Lefschetz fibration π′′. To see this, we consider the standard local model (see, [21,

Example 15.4]) around a critical point in an exact symplectic Lefschetz fibration, where a

regular fiber is symplectomorphic to the disk cotangent bundleDT ∗S1 of a circle, equipped

with its canonical symplectic structure λcan. We also note that around the new critical

point at the origin of the model Weinstein 2-handle, the smooth Lefschetz fibration agrees

smoothly with the standard local model of an exact symplectic Lefschetz fibration. But,

since in both models we use the standard symplectic structure on R4 = C2, the smooth

Lefschetz fibration can be simply viewed as an exact symplectic Lefschetz fibration.

The point is that the fibers of π′ is already symplectic and by attaching the Weinstein 2-

handle along the Lagrangian curve β ′ in a symplectic fiber (F ′, ω′|F ′) on the boundary,
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we identify a symplectic neighborhood of β ′ ⊂ (F ′, ω′|F ′) with (DT ∗S1, λcan) by the

Lagrangian neighborhood theorem. As a matter of fact, the fibers of π′ and π′′ are sym-

plectomorphic, where the monodromy of π′′ is obtained by composing the monodromy of

π′ by a symplectic Dehn twist around β ′.

Finally, since the attaching sphere of the 2-handle intersects the belt sphere of the 1-handle

at a unique point, these two handles cancel each other out smoothly. Moreover, this can-

celation also takes place in the symplectic category, up to completion, by a theorem of

Eliashberg [6, Lemma 3.6b] (see also [3] or [23, Lemma 3.9]).

The discussion above can be summarized as follows.

Lemma 2.7. Any positive stabilization of an exact symplectic Lefschetz fibration is an exact

symplectic Lefschetz fibration. Moreover, if π′′ : (W ′′, ω′′) → D2 is a positive stabilization

of an exact symplectic Lefschetz fibration π : (W,ω) → D2, then (W ′′, ω′′) and (W,ω)
have symplectomorphic completions.

Moreover, the open book on ∂W ′′ induced by π′′ is obtained by a positive stabilization

of the open book on ∂W induced by π, by definition. Therefore the contact manifold

(∂W ′′, ker(α′′)) is contactomorphic to the contact manifold (∂W, ker(α)), where ω′′ = dα′′

and ω = dα.

3. EXPLICIT OPEN BOOK DECOMPOSITIONS ADAPTED TO THE UNIT CONTACT

COTANGENT BUNDLE

For any closed surface S, Johns [13] constructed an exact symplectic Lefschetz fibration

π : (E, ω) → D2 such that (E, ω) is conformally exact symplectomorphic to the disk

cotangent bundleDT ∗S equipped with its canonical symplectic form ωcan. In the following

we give a brief summary of Johns’ work.

Johns’ initial idea was to try to “complexify” a Morse function f : S → R in order to find

a Lefschetz fibration π : DT ∗S → C, generalizing the work of A’Campo [1]. Since, this

method turned out to be difficult, he took a different approach instead.

Modifying a simple construction of a Lefschetz pencil on CP
2 discussed in [2, Section 5.2],

Johns first worked out the case of S = RP
2 obtaining a Lefschetz fibration π : DT ∗RP

2 →
D2 with three vanishing cycles explicitly described on the fiber, a 4-holed sphere. The key

point in his construction is that the map π restricted to the standard embedding of RP2 into

CP
2 is the standard Morse function on RP

2 with three critical points.

As a second example, Johns worked out the case S = T 2. Starting from a Lefschetz

fibration C∗ × C∗ → C, he obtained a Lefschetz fibration π : DT ∗T 2 → D2 arising from
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the embedding T 2 = S1 × S1 ⊂ C∗ × C∗. Again, he showed that π restricted to T 2 is a

Morse function on T 2 with four critical points. The regular fiber of the Lefschetz fibration π
in this case is a 4-holed torus, although Johns did not explicitly describe the four vanishing

cycles.

Nevertheless, based on the pattern occurring in these basic examples, Johns was able to

have an educated guess on how the fiber and the vanishing cycles would look like for a

Lefschetz fibration on DT ∗S for a general compact surface S without boundary.

Starting with a Morse function f : S → R with one minimum, one maximum and m
index 1 critical points, Johns constructed a Lefschetz fibration π : E → D2 by describing

its regular fiber, a necessarily orientable surface F obtained from the annulus by attaching

2m one handles, and giving explicitly the set of vanishing cycles consisting ofm+2 simple

closed curves on F .

Here the annulus S1× [−1, 1] can be viewed as the disk cotangent bundleDT ∗V0, where V0
is the vanishing cycle corresponding to the minimum of f . For each index 1 critical point

of f , two 1-handles are attached to the annulus and the attachment of these 1-handles can

be viewed as the plumbing of DT ∗V0 with another disk cotangent bundle DT ∗V i
1 , where

V i
1 denotes the vanishing cycle corresponding to that index 1 critical point. There are two

kinds of plumbing descriptions, however, depending on whether the index 1 critical point

of f induces an orientable or a non-orientable 1-handle in the handle decomposition of

S.

FIGURE 2. Plumbing description: orientable case on the left, non-

orientable case on the right

Finally, there is one last vanishing cycle V2, corresponding to the maximum of f , ob-

tained by the Lagrangian surgery (see Figure 3, for an example) of V0 with the union⋃m
i=1 V

1
i .
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FIGURE 3. Left: Two Lagrangian curves L0 and L1 on a surface intersect-

ing locally as shown. Right: Lagrangian surgery L0#L1

By the discussion in Section 2, the 4-manifold E admits an exact symplectic form ω, for

which π : E → D2 is an exact symplectic Lefschetz fibration. Moreover, Johns verified

that

• S admits an exact Lagrangian embedding into E.

• The critical points of π lie on S, π(S) ⊂ R, and π|S = f .

• The symplectic manifold (E, ω), after smoothing the corners of E, is conformally

exact symplectomorphic to (DT ∗S, ωcan).

Apparently, the most difficult step is the first item above. In order to find such an em-

bedding Johns used a “Milnor-type” handle decomposition—a more refined version of a

usual handle decomposition—of the surface S, referring to [19, pages 27-32]. Once this

is achieved, the second item follows from the first by construction. The last item is essen-

tially a retraction of E, by a Liouville type flow, onto a small Weinstein neighborhood of

S, which is symplectomorphic to (DT ∗S, ωcan).

In order to prove the main results of our article, we focus on the orientable surface case in

Section 3.1, while in Section 3.2, we treat the non-orientable surface case. For both cases,

we use a handle decomposition of a closed surface induced by the standard Morse function

with one minimum and one maximum, although this assumption can be removed as pointed

out in [13, Section 4.3].

3.1. Unit contact cotangent bundles of orientable surfaces. In this section, we assume

that S is a closed orientable surface of genus g, which we denote by Σg. We also denote

the exact symplectic Lefschetz fibration of Johns described above by πg : (Wg, ωg) → D2,

where (Wg, ωg) is conformally exact symplectomorphic to (DT ∗Σg, ωcan). We first review

the Lefschetz fibration πg, primarily focusing on its topological aspects.



CANONICAL CONTACT UNIT COTANGENT BUNDLE 11

The regular fiber Fg of πg is diffeomorphic to an oriented genus g surface with 2g + 2
boundary components. In the following, we describe the construction of Fg, referring to

Figure 4.

FIGURE 4. The vanishing cycles V0, V
1
1 , . . . , V

g
1 , V2

Let Rg denote the rectangle [0, 2g]× [−1, 1] in R2 equipped with the standard orientation.

We fix the following points

p2i−1 := 2(i− 1) + 1/3, p2i := 2(i− 1) + 2/3,

q2i−1 := 2(i− 1) + 4/3, q2i := 2(i− 1) + 5/3,

for i = 1, 2, . . . , g, on the x-axis. For a sufficiently small ε > 0, we set

I±pj := [pj − ε, pj + ε]× {±1}, I±qj := [qj − ε, qj + ε]× {±1} ⊂ Rg

for j = 1, 2, . . . , 2g. We identify {0} × [−1, 1] ⊂ Rg with {2g} × [−1, 1] ⊂ Rg to obtain

an annulus initially. Next, for each j = 1, 2, . . . , 2g, we identify I+pj with I−qj , and I−pj with

I+qj so that the orientation of Rg extends to the resulting surface Fg.

Note that, for each j = 1, 2, . . . , 2g, these identifications can be viewed as attaching two

1-handles, which is the same as plumbing an annulus as shown on the left in Figure 2.

By calculating the Euler characteristic, for example, it can be easily seen that Fg is diffeo-

morphic to an oriented genus g surface with 2g + 2 boundary components.
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By fixing a certain choice of distinguished set of vanishing paths, the 2g + 2 vanishing

cycles V0, V
1
1 , V

2
1 , . . . , V

2g
1 , V2 of the Lefschetz fibration πg, are given as follows. The

vanishing cycle V0 is the simple closed curve in Fg obtained from [0, 2g] × {0} ⊂ Rg

through the above identifications. Similarly, the simple closed curve V j
1 ⊂ Fg is obtained

from ({pj} × [−1, 1]) ∪ ({qj} × [−1, 1]) ⊂ Rg. Equivalently, V j
1 is the core circle of

the annulus that appears in the plumbing description (see Figure 2). The vanishing cycle

V2 ⊂ Fg comes from the Lagrangian surgery of V0 and ∪2g
i=1V

j
1 as depicted at the bottom of

Figure 4.

Next we show that the vanishing cycles V0, V
1
1 , V

2
1 , . . . , V

2g
1 , V2 can be presented with a

different point of view, by reconstructing Fg as follows. Let

Ai := [2(i− 1), 2i]× [−1, 1] ⊂ Rg

for i = 1, 2, . . . , g and let

Jj := {j} × [−1, 1]

for j = 0, 1, . . . , 2g. It is clear that Rg = ∪g
i=1Ai. Then we divide each Ai into two

pieces

A+
i := [2(i− 1), 2i− 1]× [−1, 1], A−

i := [2i− 1, 2i]× [−1, 1]

and put A+
i vertically on top of A−

i as shown in Figure 5 (a).

Since I±p2i−1
and I±p2i belong to A+

i and I±q2i−1
and I±q2i belong to A−

i , we can glue A+
i and

A−
i along these intervals. Each of these gluings is represented by a 1-handle in Figure 5

(b). Moreover, we identify J2i−1 ⊂ A+
i with J2i−1 ⊂ A−

i , which is also represented by

a 1-handle. There is another 1-handle associated to the identification of J2i ⊂ A−
i with

J2i ⊂ A+
i+1. We slide this 1-handle over the one coming from the identification of I+p2i with

I−q2i as indicated in Figure 5 (c).

Starting from the diagram in Figure 5 (c), and performing isotopies as shown in Figure

6, we now obtain a genus 1 surface with 3 boundary components. We call this surface

the “building block”, and denote it by F i
g. The key point is that the surface Fg can be

constructed by assembling these building blocks, which looks pairwise identical.

Note that the vanishing cycles can also be isotoped through the identifications and isotopies

described above. As a result, in each F i
g , we see two arcs Ṽ i

0 and Ṽ i
2 which are subarcs of V0

and V2, respectively. We also see two simple closed curves V 2i−1
1 and V 2i

1 , as depicted on

the right in Figure 6. Finally, to describe Fg and the vanishing cycles V0, V
1
1 , . . . , V

2g
1 , V2,

we arrange F 1
g , . . . , F

g
g in a circular position, glue F i

g to F i+1
g along J2i for i = 1, . . . , g−1

and glue F g
g to F 1

g along J2g and J0 as shown in Figure 7.

Since the fiber Fg is a genus g surface with 2g + 2 boundary components, we opted to

denote it with Σg,2g+2 in Theorem 3.1.
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FIGURE 5. The building block F i
g
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isotopyisotopy

FIGURE 6. Isotoping the vanishing cycles on F i
g

glue

FIGURE 7. The vanishing cycles V0, V
1
1 , . . . , V

2g
1 , V2 on the fiber Fg
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Theorem 3.1. Let V0, V
1
1 , . . . , V

2g
1 , V2 be the simple closed curves shown on the surface

Σg,2g+2
∼= Fg depicted on the right in Figure 7 and let

ϕg := D(V0)D(V 1
1 ) · · ·D(V 2g

1 )D(V2) ∈Map(Σg,2g+2, ∂Σg,2g+2).

Then, for all g ≥ 1, the open book (Σg,2g+2, ϕg) is adapted to (ST ∗Σg, ξcan).

Proof. We first note that the open book (Σg,2g+2, ϕg) induced on ∂Wg by

πg : (Wg, ωg = dαg) → D2

is adapted to the contact 3-manifold (∂Wg, ker(αg|∂Wg
)). According to [13, Theorem 1.1],

(Wg, ωg) is conformally exact symplectomorphic to (DT ∗Σg, ωcan), which is a strong sym-

plectic filling of (ST ∗Σg, ξcan). As a consequence, (∂Wg, ker(αg|∂Wg
)) is contactomorphic

to (ST ∗Σg, ξcan), and hence (Σg,2g+2, ϕg) is adapted to (ST ∗Σg, ξcan). �

Remark 3.2. Theorem 3.1 also holds for g = 0 case. Note that F0 = Σ0,2 is nothing

but an annulus. In this case, V0 = V2 is the core circle of this annulus, and there is no

V j
1 . Therefore (ST ∗S2 = RP

3, ξcan) has an adapted open book whose page is an annulus

and whose monodromy is the square of the positive Dehn twist along the core circle of the

annulus.

3.1.1. Another open book decomposition. In this section, we describe another open book

decomposition of ST ∗Σg supporting ξcan. To motivate our discussion, we digress here to

review some open book of ST ∗Σ1
∼= T 3 supporting ξcan given by Van Horn-Morris [22].

Our goal is to compare this open book with the one described in Theorem 3.1, for the case

g = 1. The page of the open book described in [22, Chapter 6] is diffeomorphic to a

4-holed torus Σ1,4 and its monodromy is given by

ϕ̃1 := D−2(a1)D
−2(a2)D

−2(a3)D
−2(a4)D(δ1)D(δ2)D(δ3)D(δ4),

where a1, a2, a3, a4, δ1, δ2, δ3, δ4 are shown on the 4-holed torusΣ1,4 depicted in Figure 8.

Using the relation (cf. [14])

D(δ1)D(δ2)D(δ3)D(δ4) = (D(a1)D(a3)D(b)D(a2)D(a4)D(b))2 ∈ Map(Σ1,4, ∂Σ1,4)

and setting A1,3 := D(a1)D(a3), A2,4 := D(a2)D(a4), we see that ϕ̃1 is equivalent to a

product of four positive Dehn twists:

ϕ̃1 = A−1
2,4A

−1
1,3A

−1
2,4A

−1
1,3A1,3D(b)A2,4D(b)A1,3D(b)A2,4D(b)

= A−1
2,4

[
A−1

1,3

(
(A−1

2,4D(b)A2,4)D(b)
)
A1,3D(b)

]
A2,4D(b)

= D(A−1
2,4A

−1
1,3A

−1
2,4(b)) D(A−1

2,4A
−1
1,3(b)) D(A−1

2,4(b)) D(b)

≡ D(A−1
2,4(b)) D(b) D(A1,3(b)) D(A1,3A2,4(b)),
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FIGURE 8. 4-holed torus Σ1,4

where the notation “≡” means “related by a global conjugation”. Here we conjugated with

the diffeomorphism A1,3A2,4, to obtain the last line from the previous one. We would like

to compare this open book with the one described in Theorem 3.1, for the case g = 1. The

latter has monodromy

ϕ1 = D(V0)D(V 1
1 )D(V 2

1 )D(V2) ∈ Map(Σ1,4, ∂Σ1,4),

where the curves V0, V
1
1 , V

2
1 , V2 are depicted in Figure 9.

FIGURE 9. The vanishing cycles V0, V
1
1 , V

2
1 , V2 on Σ1,4

Now one can easily verify that V0 = A−1
2,4(b), V

1
1 = b, V 2

1 = A−1
2,4A1,3(b), and V2 = A1,3(b),

using our notation above.

Hence we get

ϕ1 = D(A−1
2,4(b)) D(b) D(A−1

2,4A1,3(b)) D(A1,3(b)),

and we claim that ϕ1 and ϕ̃1 are Hurwitz-equivalent. To see this, we apply a Hurwitz move

to ϕ̃1. Namely, we switch the order of the last two Dehn twists in the factorization of ϕ̃1 as
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follows:

D(A−1
2,4(b)) D(b) D(A1,3D(b)A−1

1,3A1,3A2,4(b)) D(A1,3(b)).

Here we used the relation D(A1,3(b)) = A1,3D(b)A−1
1,3. To prove our claim, one can simply

verify that A1,3D(b)A−1
1,3A1,3A2,4(b) is isotopic to A−1

2,4A1,3(b) by a direct calculation on the

surface Σ1,4.

The upshot is that the open books (both of whose page is a 4-holed torus) given by mon-

odromies ϕ1 and ϕ̃1, respectively, are indeed isomorphic. Moreover, there is an exact

symplectic Lefschetz fibration π̃1 : (W̃1, ω̃1) → D2 whose monodromy is ϕ̃1. Recall that

we already considered an exact symplectic Lefschetz fibration π1 : (W1, ω1) → D2 whose

monodromy is ϕ1, at the beginning of Section 3. By Lemma 2.6, we immediately deduce

the following corollary.

Corollary 3.3. The exact symplectic Lefschetz fibrations π1 : (W1, ω1) → D2 and π̃1 :

(W̃1, ω̃1) → D2 are isomorphic through an exact symplectomorphism.

In his thesis [22, Chapter 4], Van Horn-Morris describes another open book adapted to the

contact 3-manifold (ST ∗Σ1, ξcan), whose page is a 3-holed torus Σ1,3 (rather than 4-holed)

and whose monodromy is given by

ψ1 = D(δ1)D(δ2)D(δ3)D
−3(a1)D

−3(a2)D
−3(a3),

where a1, a2, a3, b, δ1, δ2, δ3 are shown on the 3-holed torus Σ1,3 depicted in Figure 10.

FIGURE 10. 3-holed torus Σ1,3

By using the star relationD(δ1)D(δ2)D(δ3) = (D(b)D(a1)D(a2)D(a3))
3, and setting

T = D(a1)D(a2)D(a3),
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we have

ψ1 = D(δ1)D(δ2)D(δ3)D
−3(a1)D

−3(a2)D
−3(a3)

= (D(b)T )3T−3

= D(b)TD(b)TD(b)T−2

≡ (T−1D(b)T )D(b)(TD(b)T−1)

= D(T−1(b)) D(b) D(T (b)).

Hence we see that the monodromy of this open book is equivalent to the product of three

positive Dehn twists. Moreover, since both (Σ1,3, ψ1) and (Σ1,4, ϕ̃1), are adapted to the

contact 3-manifold (ST ∗Σ1, ξcan), they must have a common positive stabilization. As a

matter of fact, one can easily verify that (Σ1,3, ψ1) stabilized twice and (Σ1,4, ϕ̃1) stabilized

once are equivalent, using the lantern relation.

Motivated by the genus one case, for each g ≥ 1, we construct an open book adapted to

(ST ∗Σg, ξcan) whose page is diffeomorphic to Σg,g+2, reducing the number of boundary

components of the page, compared to that which appeared in Theorem 3.1. The key idea

is to cut down one boundary component for each building block that we used above to

construct the page Fg. To construct this new open book adapted to (ST ∗Σg, ξcan), we

introduce a new building block, inspired by the genus one case. We set u0 := T−1(b) and

u2 := T (b), as depicted in Figure 11.

FIGURE 11. The curves u0, u2 and the arc s on Σ1,3

Let s be the arc whose endpoints lie on two distinct boundary components in a 3-holed

torus Σ1,3 as shown in Figure 11 and let N(s) denote a tubular neighborhood of s. We

write Σ̃ for the resulting surface, after removing s× (−1, 1) from Σ1,3, where we identify

N(s) with s× [−1, 1]. We write ũ0 and ũ2 for the two arcs in Σ̃ obtained from the curves

u0 and u2, respectively, by removing their intersection with N(s).
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We take g copies of Σ̃ and denote each copy by Σ̃j , for j = 1, . . . , g. We set

sj × {±1} := s× {±1} ⊂ Σ̃j ,

ũji := ũi ⊂ Σ̃j(i = 0, 2), ũj1 := u1 ⊂ Σ̃j ,

and put Σ̃1, Σ̃2, . . . , Σ̃g in a circular position as depicted on the left in Figure 12. Now, we

glue Σ̃j to Σ̃j+1 by identifying sj×{1} with sj+1×{−1} for j = 1, 2, . . . , g−1 and we glue

Σ̃g to Σ̃1 by identifying sg × {1} with s1 × {−1}. As a consequence, we obtain a surface

diffeomorphic to Σg,g+2, which is depicted on the right in Figure 12. Via the identifications

above, the union of the arcs ũj0 and ũj2 form simple closed curves U0 and U2, respectively,

in Σg,g+2. Considering Σ̃j as a subsurface of Σg,g+2, we denote uj1 by U j
1 .

glue

FIGURE 12. The curves U0, U
1
1 , . . . , U

g
1 , U2 on the page Σg,g+2

Theorem 3.4. LetU0, U
1
1 , . . . , U

g
1 , U2 be the simple closed curves shown on Σg,g+2 depicted

on the right in Figure 12 and let

ψg := D(U0)D(U1
1 ) · · ·D(Ug

1 )D(U2) ∈Map(Σg,g+2, ∂Σg,g+2).

Then, for all g ≥ 1, the open book (Σg,g+2, ψg) is adapted to (ST ∗Σg, ξcan).
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Proof. We show that (Σg,g+2, ψg) and (Σg,2g+2, ϕg) have a common positive stabilization.

The result follows from a theorem of Giroux [10] coupled with our Theorem 3.1. Let

α1,j, α2,j , . . . , α5,j , βj (for j = 1, 2, . . . , g), and γ be the simple closed curves on Σg,4g+2 as

shown in Figure 13.

FIGURE 13. We illustrate a genus g surface Σg,4g+2 with 4g + 2 boundary

components. There are two boundary components at the center: one is on

top indicated by the solid circle whose interior is shaded; the other one is on

the back side of the surface indicated by the dashed circle.

In order to prove our claim, we first stabilize the open book (Σg,g+2, ψg) 3g times as indi-

cated in Figure 14. Here we just illustrate three stabilizations on each building block, where

the stabilizing curves are α1,i, α3,i and α4,i. The page of the resulting open book is Σg,4g+2

(identified with the surface in Figure 13) and the monodromy ψ̂g ∈Map(Σg,4g+2, ∂Σg,4g+2)
is given by
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isotopy

FIGURE 14. Each “building block” in the open book (Σg,g+2, ψg) is stabi-

lized three times, where the stabilizing curves α1,i, α3,i and α4,i are pairwise

disjoint. To go from top to bottom, we just move the newly created two

holes (on the top-left) by an isotopy, along with the curves α3,i and α4,i.

ψ̂g = ψgD(α1,1) · · ·D(α1,g)D(α3,1) · · ·D(α3,g)D(α4,1) · · ·D(α4,g),

where ψg is extended to Σg,4g+2 by identity.
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isotopy

FIGURE 15. Each “building block” in the open book (Σg,2g+2, ϕg) is stabi-

lized twice, where the stabilizing curves ηi := D−1(V2)D
−1(βi)(α4,i) and

α1,i are disjoint.

Similarly, we stabilize the open book (Σg,2g+2, ϕg) 2g times as indicated in Figure 15. Here

we just illustrate two stabilizations on each building block, where the stabilizing curves

are α1,i and ηi := D−1(V2)D
−1(βi)(α4,i). The page of the resulting open book is Σg,4g+2

(identified with the surface in Figure 13) and the monodromy ϕ̂g ∈Map(Σg,4g+2, ∂Σg,4g+2)
is given by

ϕ̂g = ϕgD(η1) · · ·D(ηg)D(α1,1) · · ·D(α1,g),



CANONICAL CONTACT UNIT COTANGENT BUNDLE 23

where ϕg is extended to Σg,4g+2 by identity.

Now we claim that ψ̂g and ϕ̂g are conjugate. First of all, both ψ̂g and ϕ̂g can be viewed

as self-diffeomorphisms of the surface Σg,4g+2 shown in Figure 13. In the following, we

express the curves involved in the definitions of ψ̂g and ϕ̂g in terms of those depicted in

Figure 13. For convenience, we set

αi := ∪g
j=1αi,j, β := ∪g

j=1βj , D(αi) := Πg
j=1D(αi,j), D(β) := Πg

j=1D(βj).

Then, we have

U0 = D−1(α2)D
−1(α5)D(β)(γ), U j

1 = βj , U2 = D(α2)D(α5)D
−1(β)(γ),

V0 = D(α4)D
−1(α2)D

−1(α5)D(β)(γ) = D(α4)(U0), V 2j−1
1 = D−1(α3,j)D(α4,j)(βj),

V 2j
1 = βj, V2 = D−1(α3)D(α2)D(α5)D

−1(β)(γ) = D−1(α3)(U2).

In the following argument, we writeD(αi)D(β)D−1(αi) for Πg
j=1(D(αi,j)D(βj)D

−1(αi,j)),
and this is justified by the fact that D(αi,k)D(βj) = D(βj)D(αi,k) for k 6= j.

Using the notation “≡” for “related by a cyclic permutation or a Hurwitz move”, and un-

derlining each pair of Dehn twists where we perform a Hurwitz move, we have

ψ̂g = ψgD(α1,1) · · ·D(α1,g)D(α3,1) · · ·D(α3,g)D(α4,1) · · ·D(α4,g)

= D(U0)D(U1
1 ) · · ·D(Ug

1 )D(U2)D(α1)D(α3)D(α4)

≡ D(D−1(α2)D(α5)D(β)(γ))D(β)D(D(α2)D(α5)D
−1(β)(γ))D(α3)D(α1)D(α4)

≡ D(α4)D(D−1(α2)D(α5)D(β)(γ))D(β)D(D−1(α2)D(α5)D
−1(β)(γ))D(α3)D(α1)

≡ D(D(α4)D
−1(α2)D(α5)D(β)(γ))D(α4)D(β)D(α3)D(D−1(α3)D(α2)D(α5)D

−1(β)(γ))D(α1)

= D(V0)D(α4)D(β)D(α3)D(V2)D(α1)

≡ D(V0)D(D(α4)(β))D(α4)D(α3)D(V2)D(α1)

≡ D(V0)D(D(α4)(β))D(α3)D(α4)D(V2)D(α1)

≡ D(V0)D(α3)D(D−1(α3)D(α4)(β))D(α4)D(V2)D(α1)

≡ D(V0)D(α3){Π
g
j=1D(V 2j−1

1 )}D(α4)D(V2)D(α1)

≡ D(V0){Π
g
j=1D(V 2j−1

1 )}D({Πg
j=1D

−1(V 2j−1
1 )}(α3))D(α4)D(V2)D(α1)
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Using the fact that D−1(V 2j−1
1 )(α3,j) and D(α4,j)(βj) are isotopic, we continue the se-

quence of equivalences above as

= D(V0){Π
g
j=1D(V 2j−1

1 )}D(D(α4)(β))D(α4)D(V2)D(α1)

≡ D(V0){Π
g
j=1D(V 2j−1

1 )}D(α4)D(β)D(V2)D(α1)

≡ D(V0){Π
g
j=1D(V 2j−1

1 )}D(β)D(D−1(β)(α4))D(V2)D(α1)

≡ D(V0){Π
g
j=1D(V 2j−1

1 )}{Πg
j=1D(V 2j

1 )}D(V2)D(D−1(V2)D
−1(β)(α4))D(α1)

≡ D(V0){Π
g
j=1D(V 2j−1

1 )}{Πg
j=1D(V 2j

1 )}D(V2){Π
g
j=1D(ηj)}D(α1)

= D(V0){Π
g
j=1D(V 2j−1

1 )}{Πg
j=1D(V 2j

1 )}D(V2){Π
g
j=1D(ηj)}D(α1)

= ϕgD(η1) · · ·D(ηg)D(α1,1) · · ·D(α1,g)

= ϕ̂g.

Since a cyclic permutation is equivalent to a global conjugation of the monodromy, and

a Hurwitz move does not affect the monodromy, we conclude that ψ̂g = ϕ̂g up to conju-

gation. Therefore, the open books (Σg,g+2, ψg) and (Σg,2g+2, ϕg) have a common positive

stabilization. �

Corollary 3.5. Let π′
g : (W ′

g, ω
′
g) → D2 denote the exact symplectic Lefschetz fibration,

whose regular fiber is Σg,g+2 and whose monodromy is

ψg = D(U0)D(U1
1 ) · · ·D(Ug

1 )D(U2).

Then, for all g ≥ 1, the completion of (W ′
g, ω

′
g) is symplectomorphic to the completion of

(DT ∗Σg, ωcan). In particular, W ′
g is diffeomorphic to DT ∗Σg.

Proof. By the proof of Theorem 3.4, we see that πg (defined at the beginning of Section 3)

and π′
g have a common positive stabilization, up to Hurwitz moves and global conjugations.

Note that a global conjugation induces an isomorphism of exact symplectic Lefschetz fibra-

tions through a symplectomorphism of their total spaces. Therefore, the statement follows

by combining Lemma 2.6 and Lemma 2.7. �

As mentioned in Section 1, according to Wendl [24], any minimal strong symplectic filling

of (ST ∗Σ1
∼= T 3, ξcan) is symplectic deformation equivalent to (DT ∗Σ1

∼= T 2×D2, ωcan).
Therefore, we would like to finish this section with the following question.

Question 3.6. Is it true that (W ′
g, ω

′
g) in Corollary 3.5 is symplectic deformation equivalent

to (DT ∗Σg, ωcan), for all g ≥ 2?

It is plausible that the answer to Question 3.6 is positive, via a Liouville type flow as in

[13], although we could not verify it.
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3.2. Unit contact cotangent bundles of non-orientable surfaces. In this section, we as-

sume that S is the closed non-orientable surface obtained by the connected sum of k copies

of RP2, which we denote byNk. We also denote the exact symplectic Lefschetz fibration of

Johns discussed above by πk : (Mk, ωk) → D2, where (Mk, ωk) is conformally exact sym-

plectomorphic to (DT ∗Nk, ωcan). We first review the Lefschetz fibration πk by describing

its fiber and a set of vanishing cycles.

The fiber Fk (see Figure 16) is constructed as follows: Let Rk denote the rectangle [0, k]×
[−1, 1] in R2 equipped with the standard orientation.

FIGURE 16. The vanishing cycles V0, V
1
1 , . . . , V

k
1 , V2

We fix the points

p2i−1 := (i− 1) + 1/3, p2i := (i− 1) + 2/3,

for i = 1, 2, . . . , k on the x-axis. For a sufficiently small ε > 0, set

I±pj := [pj − ε, pj + ε]× {±1} ⊂ R
2,

for j = 1, 2, . . . , 2k. We first identify {0}× [−1, 1] with {k}× [−1, 1] to obtain an annulus.

Next, we identify I+p2j−1
with I+p2j , and I−p2j−1

with I−p2j for j = 1, 2, . . . , k

Note that, for each j = 1, 2, . . . , k, these identifications can be viewed as attaching two 1-

handles, which is the same as plumbing an annulus as shown on the right in Figure 2.
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It is clear (see Figure 17) that the resulting oriented surface is a planar surface with 2k + 2
boundary components.

FIGURE 17. The vanishing cycles V0, V
1
1 , . . . , V

k
1 , V2 on the fiber Fk

Now we describe the vanishing cycles V0, V
1
1 , . . . , V

k
1 , V2 of πk for a fixed distinguished

basis of vanishing paths. The vanishing cycle V0 is the simple closed curve in Fk obtained

from [0, k] × {0} ⊂ Rk through the above identifications. Similarly, the simple closed

curve V j
1 ⊂ Fk is obtained from {p2j−1} × [−1, 1] ∪ {p2j} × [−1, 1] ⊂ Rk. Equivalently,

V j
1 is the core circle of the annulus that appears in the plumbing description (see Figure 17).

The last vanishing cycle V2 is the simple closed curve in Fk obtained from the Lagrangian

surgery of V0 and ∪k
i=1V

k
1 .

The following theorem is proved by the same argument we used to prove Theorem 3.1.

Theorem 3.7. Let V0, V
1
1 , . . . , V

k
1 , V2 be the simple closed curves shown on the surface

Σ0,2k+2
∼= Fk depicted in Figure 17 and let

φk := D(V0)D(V 1
1 ) · · ·D(V k

1 )D(V2) ∈Map(Σ0,2k+2, ∂Σ0,2k+2).

Then, for all k ≥ 1, the open book (Σ0,2k+2, φk) is adapted to (ST ∗Nk, ξcan).

Remark 3.8. Note that F1 = Σ0,4 is the 4-holed sphere and the monodromy

φ1 = D(V0)D(V 1
1 )D(V2)

of the open book given in Theorem 3.7 on ST ∗
RP

2 = L(4, 1) is equal, by the lantern

relation, to the product of positive Dehn twists along four curves each of which is parallel

to a boundary component of Σ0,4.
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APPENDIX: DIFFEOMORPHISM TYPES OF THE TOTAL SPACES OF THE LEFSCHETZ

FIBRATIONS

In this appendix, we verify that the total spaces of the Lefschetz fibrations πg : Wg → D2

(see Section 3.1) and πk : Mk → D2 (see Section 3.2) are diffeomorphic to DT ∗Σg and

DT ∗Nk, respectively.

3.3. Orientable case. We show that, for each g ≥ 1, the 4-manifold Wg is diffeomorphic

to DT ∗Σg using Kirby calculus. There is a handle decomposition of the fiber Fg, after

isotopy, as shown in Figure 18.

FIGURE 18. Handle decomposition of Fg: The large rectangle represents

the 0-handle and each band represents a 1-handles.

Based on this handle decomposition of Fg and the collection of vanishing cycles V0, V
1
1 ,

. . . , V 2g
1 , V2, we draw the Kirby diagram of Wg as depicted in Figure 19 (a). Using 2-

handle slides and 1-/2-handle cancelations as indicated in Figure 19 (b), we obtain the Kirby

diagram shown in Figure 19 (c). Next we switch to dotted circle notation for 1-handles, and

after isotopies, we see that the Kirby diagram in Figure 20 (b) represents the disk bundle

over Σg with Euler number 2g − 2, which is indeed diffeomorphic to DT ∗Σg.

3.4. Non-orientable case. We show that, for each k ≥ 1, the 4-manifold Mk is diffeo-

morphic to DT ∗Nk, again using Kirby calculus. We start with the canonical handle de-

composition of the fiber Fk (see Figure 17) and draw the Kirby diagram of Mk as depicted

in Figure 21 (a). After sliding 2-handles and cancelling 1-/2-handle pairs, we obtain the

Kirby diagram shown in Figure 21 (b). This diagram shows that Mk is diffeomorphic to a

disk bundle over Nk. The Euler number of this disk bundle is k − 2 since the framing of

the 2-handle in the diagram is −k − 2 (cf. [11, Section 4.6]). Therefore, we conclude that

Mk is diffeomorphic to DT ∗Nk.
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FIGURE 19. Kirby diagram of Wg and Kirby calculus: Each small arrow in

the diagram indicates how we slide a 2-handle over another one.
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FIGURE 20. Kirby diagram of Wg.

FIGURE 21. Kirby diagram of Mk and the Kirby calculus.
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