
ON OPEN BOOKS FOR NONORIENTABLE 3-MANIFOLDS

BURAK OZBAGCI

ABSTRACT. We show that the monodromy of Klassen’s genus two open book for
P 2 × S1 is the Y -homeomorphism of Lickorish, which is also known as the cross-
cap slide. Similarly, we show that S2×̃S1 admits a genus two open book whose
monodromy is the crosscap transposition. Moreover, we show that each of P 2×S1

and S2×̃S1 admits infinitely many isomorphic genus two open books whose mon-
odromies are mutually nonisotopic. Furthermore, we include a simple observa-
tion about the stable equivalence classes of open books for P 2 × S1 and S2×̃S1.
Finally, we formulate a version of Stallings’ theorem about the Murasugi sum of
open books, without imposing any orientability assumption on the pages.

1. INTRODUCTION

It is a classical theorem of Alexander [2] that there is an open book for any closed
orientable 3-manifold, which can be obtained by pulling back the standard open
book for S3 via some branched covering, where the branch set is braided about the
binding. In the nonorientable case, an analogous result was obtained by Berstein
and Edmonds [3], who first proved that every closed nonorientable 3-manifold is
a branched cover of P 2 × S1 and then showed as a corollary that an open book
for P 2 × S1 can be pulled back to the cover, where P 2 denotes the real projective
plane. In their work, however, Berstein and Edmonds used the Stallings’ fibra-
tion theorem [19] to show the existence of a genus two open book with connected
binding (meaning that its page is a Klein bottle with one hole) for P 2 × S1, rather
than describing the open book explicitly. They also mentioned [3, Remark 9.2] that
the monodromy of their genus two open book must be the Y -homeomorphism of
Lickorish [12], without a detailed proof.

In a two-page note, Klassen [10] described an explicit genus two open book with
connected binding for P 2 × S1, without discussing its monodromy. In this paper, we
prove that the monodromy of Klassen’s genus two open book for P 2×S1 is the Y -
homeomorphism—which is a primary example of a surface homeomorphism that
cannot be factorized into Dehn twists. We also show that the nonorientable S2-
bundle over S1, denoted by S2×̃S1, admits a genus two open book with connected
binding, whose monodromy is the crosscap transposition—another example of a
surface homeomorphism that cannot be factorized into Dehn twists. As a matter
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2 BURAK OZBAGCI

of fact, we show that each of P 2×S1 and S2×̃S1 admits infinitely many isomorphic
genus two open books with connected bindings, whose monodromies are mutu-
ally nonisotopic.

The reader should compare our result with a recent result of Ghanwat, Pandit
and Selvakumar [8], who proved that every closed nonorientable 3-manifold ad-
mits a genus one open book (meaning that its page is a projective plane with holes),
which is analogous to the fact that every closed orientable 3-manifold admits a pla-
nar open book (cf. [18], see also [14]). A notable common feature of the planar open
books constructed in [14] for the orientable 3-manifolds and the genus one open
books constructed in [8] for the nonorientable 3-manifolds is that the monodromy
of each one of them is a product of Dehn twists along two-sided curves on the
page.

Giroux showed that on a closed orientable 3-manifold, the coorientable contact
structures up to isotopy are in one-to-one correspondence with the open books
up to positive stabilization. In contrast, there is no contact structure on a nonori-
entable 3-manifold even if one drops the usual coorientability assumption on the
contact structures. Nevertheless, one can still consider an equivalence relation on
the set all open books on a closed nonorientable 3-manifold, induced by stabi-
lizations. According to [8], P 2 × S1 admits a genus one open book whose mon-
odromy is a product of Dehn twists along two-sided curves. On the other hand,
as we show here, the monodromy of Klassen’s genus two open book for P 2 × S1

is the Y -homeomorphism. As a consequence, we conclude that these two open
books for P 2 × S1 cannot be in the same equivalence class. By a similar argument
we show that the genus two open book with connected binding for S2×̃S1 whose
monodromy is the crosscap transposition is not stably equivalent to the standard
genus one open book with connected binding, whose monodromy is the identity
map.

Using algebraic methods, Stallings [20] proved that the result of a Murasugi sum
(a.k.a. plumbing) of the oriented pages of two open books is the oriented page of
another open book whose total space is the connected sum of total spaces of those
open books. Later, Gabai [7] gave a geometric proof of Stallings’ theorem. Here,
we formulate a version of Stallings’ theorem without imposing the orientability of
the pages of the open books so that Gabai’s proof extends to this version.

We also provide a method to find a presentation of the fundamental group of
the total space of any given nonorientable open book (in dimension three) based
on the fundamental group of its page and its monodromy, similar to the one given
in [6] for the orientable case.
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2. Y -HOMEOMORPHISM OF LICKORISH

Throughout the paper, we denote byK the Klein bottle with one hole, i.e., a nonori-
entable genus two surface with one boundary component. A model for K is given
in Figure 1, where the edges of the octagon are identified as indicated by the arrows
and the union of the red arcs is the boundary ∂K after the identifications.

α

β

FIGURE 1. Klein bottle with one hole

Let r denote the self-homeomorphism of K induced by the reflection of this
octagon through the circle α. Since r does not fix ∂K pointwise, it is not an element
of the mapping class groupMap(K) ofK. However, the homeomorphism y : K →
K obtained by post-composing r with a half twist around ∂K fixes ∂K pointwise
and hence it is an element of Map(K), which is a Y -homeomorphism of Lickorish
[12]. The two possible half twists around ∂K induce two Y -homeomorphisms of
K which are inverses of each other. By definition, r2 is the identity, but this is no
longer true for y. It can be easily verified that y2 is isotopic to a Dehn twist around
∂K.

In fact, Lickorish defined a Y -homeomorphism on any nonorientable surface N
of genus at least two as follows. Suppose that α is a two-sided and β is a one
sided simple closed curve on N intersecting transversely at one point. Then a
regular neighborhood of α ∪ β is homeomorphic to K. A Y -homeomorphism of
N is obtained simply by extending the homeomorphism y to the surface N by the
identity map. A Y -homeomorphism is also called a crosscap slide in the literature
[11], especially when the nonorientable surface at hand is described by crosscaps.
Note that a Y -homeomorphism on N cannot be expressed as a product of Dehn
twists along two-sided curves [12].
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3. KLASSEN’S GENUS TWO OPEN BOOK

In this section, we describe Klassen’s genus two open book for P 2 × S1 (cf. [10])
and prove that its monodromy is the Y -homeomorphism of Lickorish. We view the
real projective plane P 2 as the unit diskD2 in the complex plane C whose boundary
is identified with itself by the antipodal map. Note that the homeomorphism ϕ′ :
D2 → D2 given by ϕ′(z) = −z descends to a homeomorphism ϕ : P 2 → P 2, which
is isotopic to the identity. As a matter of fact, any self-homeomorphism of P 2 is
isotopic to the identity [4]. Let I denote the unit interval [0, 1]. It follows that the
quotient P 2 × I/

(
(x, 1) ∼ (ϕ(x), 0)

)
, is homeomorphic to P 2 × S1.

Next, we consider the map p :
(
D2 − {−1

2
, 1
2
}
)
× I → S1 which is given by

p(z, t) =
z2 − 1

4

|z2 − 1
4
|
e2πit.

Note that
(
{−1

2
, 1
2
} × I

)
/ ∼ is a knot in P 2 × S1, which we denote by B. The map

p induces a fibration of the complement of B in P 2 × S1 over the unit circle in the
complex plane. This construction yields an open book for P 2 × S1 whose binding
B winds twice around the S1 factor.

Now we consider the page F0 ⊂ P 2 × S1 which is defined as the union of the
binding B and the fiber p−1(e2πi0) under the identifications described above. We
claim that F0 is a Klein bottle with one hole, whose boundary is B. By definition,
the interior of F0 is the solution set of the equation p(z, t) = 1, or equivalently, the
equation

(3.1) (z2 − 1

4
)e2πit = |z2 − 1

4
|.

To visualize this solution set, which is a surface, we compute its cross sections for
each t ∈ I in the cylinder

(
D2 − {−1

2
, 1
2
}
)
× I , keeping in mind that the points on

∂D2 are identified by the antipodal map. Since the right-hand side of Equation 3.1
is real and positive, by plugging in z = x+ iy, we conclude that

(3.2) Im[(x2 + 2xyi− y2 − 1

4
)
(

cos(2πt) + i sin(2πt)
)
] = 0

and

(3.3) Re[(x2 + 2xyi− y2 − 1

4
)
(

cos(2πt) + i sin(2πt)
)
] > 0

which, in turn, imply that

(3.4) (x2 − y2 − 1

4
) sin(2πt) + 2xy cos(2πt) = 0.
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and

(3.5) xy < 0 if t ∈ (0,
1

2
) and xy > 0 if t ∈ (

1

2
, 1).

FIGURE 2. The hyperbolas (x2 − y2 − 1
4
) sin(2πt) + 2xy cos(2πt) = 0

for t ∈ (0, 1) and t 6= 1
2
.

We observe that, for each t ∈ (0, 1
2
) ∪ (1

2
, 1), the solution of Equation 3.4 is a hy-

perbola whose axis is rotated by the angle (1
4
− t)π as depicted in Figure 2. Note

that each of these hyperbolas pass through the points ±1
2

in the plane. Therefore,
by Inequality 3.5, the cross section at any t ∈ (0, 1

2
) is the part of the correspond-

ing hyperbola that belongs to the region xy < 0 in the plane, which becomes the
interior of an arc connecting two points in B via the identification of ∂D2 under
the antipodal map. Similarly, the cross section at t ∈ (1

2
, 1) is the part of the corre-

sponding hyperbola that belongs to the region xy > 0 in the plane, which becomes
the interior of an arc connecting two points inB via the identification of ∂D2 under
the antipodal map.

When t = 0, Equation 3.2 and Inequality 3.3 imply that the cross section is the
union (−1,−1

2
)∪ (1

2
, 1) on the real line in D2 ⊂ C as depicted on the left in Figure 3,

which becomes the interior of an arc connecting two points in B via the identifica-
tion of ∂D2 under the antipodal map. The cross section for t = 1 is the same as the
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cross section for t = 0 and these arcs are identified in P 2 × S1 under the map ϕ via
reversing the orientation.

FIGURE 3. On the left: Cross section at t = 0, and on the right: Cross
section at t = 1

2

When t = 1
2
, Equation 3.2 and Inequality 3.3 imply that the cross section is the

union of the arc (−i, i) on the imaginary axis and the arc (−1
2
, 1
2
) on the real axis

as depicted on the right in Figure 3, which becomes the union of a circle and the
interior of an arc connecting two points in B via the identification of ∂D2 under
the antipodal map.

To summarize, for each t ∈ [0, 1
2
) ∪ (1

2
, 1] the cross section is an arc connecting

two points on the binding B and for t = 1
2

the cross section is the union of a circle
and an arc connecting two points in B. The cross section at the critical level t = 1

2

can be viewed as the limit of the hyperbolas depicted in Figure 2 as t → 1
2
. The

cross section for t = 0 (which is the same as t = 1) can also be seen in Figure 2 as
the limit of the hyperbolas as t → 0 (or equivalently as t → 1). We claim that the
page F0, which is the union of the binding B and all the cross sections for t ∈ [0, 1]
under the identification ϕ is homeomorphic to K, the Klein bottle with one hole,
whose boundary is B. To see that F0 depicted in Figure 4 is homeomorphic to K,
we simply redraw it as an octagon on the plane with appropriate identification of
its edges as shown in Figure 5.

Next, we observe that, for any s ∈ (0, 1), the page Fs = B ∪ p−1(e2πis) of this
open book is obtained by a vertical translation of the page F0 depicted in Figure 4.
This follows from the fact that the interior of the page Fs is the solution set of the
equation

P (z, t) =
z2 − 1

4

|z2 − 1
4
|
e2πit = e2πis

which is equivalent to
z2 − 1

4

|z2 − 1
4
|
e2πi(t−s) = 1.
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FIGURE 4. The page F0 is depicted in P 2 × S1. Here each horizontal
disk is a copy of the unit disk in C that represents a P 2. The top (t = 1)
and the bottom (t = 0) P 2 are identified by the homeomorphism ϕ to
obtain P 2 × S1. There is a saddle of the surface F0 at the level t = 1

2
.

The union of the red arcs is the binding B = ∂F0 ⊂ P 2 × S1.

32

4 R

R

R

R

1

FIGURE 5. After identifying the edges as indicated, the result is
homeomorphic to K. The union of the red arcs gives ∂K.

Therefore, the cross section of the page Fs at the level t is exactly the cross section
of F0 at the level t− s.
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Theorem 3.1. The monodromy of Klassen’s open book for P 2 × S1, whose page is a Klein
bottle with one hole, is given by the Y -homeomorphism of Lickorish.

Proof. Using the description of P 2 × S1 as in Figure 4, one can see that the vertical
vector field ∂

∂t
is transverse to the (interior) of each page of the open book and

tangent to the binding B = ∂F0. Now we consider the homeomorphism h of the
page F0 induced by the time 1-map of the flow of this vector field. Note that h
interchanges the two red arcs in Figure 4. In other words, although it does not fix
the binding B pointwise, it takes B to itself by half twist (a rotation of π degrees).

The solid green arc appearing at the front face of the cylinder in Figure 4 is
mapped by h to the dashed green arc at the back of the cylinder and vice versa.
But the solid green arc and the dashed green arc (which are in fact both circles
after identifications) are identified with each other on the page F0. This means
that the homeomorphism h takes the green circle to itself. The flow of the vertical
vector field preserves the blue circle shown at the critical level t = 1

2
in Figure 4, ex-

cept that its orientation gets reversed (via a reflection through its midpoint) while
identifying the top and the bottom P 2 by the map ϕ.

R
1

R
2

R
3 R

4

R
1

R
2 R

3

R
4

α

β β

α

FIGURE 6. Two models of K. The one on the right (which is a copy
of Figure 5) is obtained by cutting the one on the left (which is a copy
of Figure 1) along α and gluing back the resulting pieces as indicated.

We conclude that, in the model of K depicted in Figure 5, the homeomorphism
h is a reflection of K that interchanges the region R1 with the region R2, and the
region R3 with the region R4. This reflection in the model of K in Figure 5 is
equivalent to the reflection through α in Figure 1, as illustrated in Figure 6.

Hence the homeomorphism h on F0 = K induced by the vertical vector field is
equivalent to the reflection homeomorphism r defined in Section 2. Therefore, by
perturbing the vector field near the binding B so that it is meridional (and hence
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its flow fixes B pointwise), we conclude that the monodromy as an element of
Map(K), is the Y -homeomorphism y : K → K of Lickorish. �

4. ANOTHER PROOF OF THEOREM 3.1

In this section, we provide an alternative proof of Theorem 3.1. We denote by
OB(N, φ) the closed 3-manifold which is the total space of an abstract open book
whose page is a surface N , and whose monodromy is φ ∈Map(N).

Theorem 4.1. If y ∈ Map(K) is the Y -homeomorphism of Lickorish, then OB(K, y) =
P 2 × S1.

Proof. If p is a point in ∂K, then π1(K, p) is freely generated by the oriented loops
a and b depicted in Figure 7. First we compute the fundamental group of the map-
ping torus Ky = K × [0, 1]/ ∼ based at the point p, where (x, 1) ∼ (y(x), 0). Let µ
denote the loop [0, 1]/ ∼ based at p and let y∗ denote the action of y on π1(Ky, p).
Then

π1(Ky, p) = 〈a, b, µ | µaµ−1 = y∗a, µbµ
−1 = y∗b〉.

p
a

b

FIGURE 7. π1(K, p) is freely generated by the oriented loops a and b.

It can be verified that y∗a is homotopic to bab−1 (see Figure 8) and y∗b is homo-
topic to hb−1h−1 (see Figure 9), for some loop h based at p. To obtainOB(K, y) from
the mapping torus Ky, we just glue a solid torus (a neighborhood of the binding)
where the loop µ is null-homotopic. Therefore, the fundamental group ofOB(K, y)
based at p has the following presentation

〈a, b | a = bab−1, b = hb−1h−1〉.
This group is abelian because of the first relation and the second relation gives
b2 = 1. Hence π1(OB(K, y), p) is isomorphic to Z × Z2. It is well-known that a
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p p

b

a

FIGURE 8. The loop y∗a (left) is homotopic to bab−1 (right).

−1

p p

h

b

FIGURE 9. The loop y∗b (left) is homotopic to hb−1h−1 (right).

closed 3-manifold whose fundamental group is isomorphic to Z × Z2 is homeo-
morphic to P 2 × S1 (see, for example, Table 1.2 in [1]). Here, the Poincaré con-
jecture is needed to rule out the case of connected sum with a homotopy sphere.
There is, however, an alternative proof avoiding the use of the Poincaré conjecture
as follows: The 3-manifold OB(K, y) has a (nonorientable) Heegaard splitting of
genus two obtained from the genus two open book and Ochiai [13] proved that any
closed nonorientable 3-manifold with fundamental group Z × Z2, which admits a
Heegaard splitting of genus two, is homeomorphic to P 2 × S1. �

5. FUNDAMENTAL GROUP OF A NONORIENTABLE OPEN BOOK

The total space of an open book is orientable if and only if the pages of the open
book are orientable. Therefore, we will refer to an open book with nonorientable
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pages as a nonorientable open book, in short. The genus of an open book is defined
as the genus of its page as a (not necessarily orientable) surface with boundary.

In the following, we briefly review a method to calculate the fundamental group
of the total space of any abstract nonorientable open book in dimension three. The
discussion below is similar to the orientable case described in [6, Section 2.1]. Sup-
pose that N is a nonorientable surface of genus k with r boundary components,
and let φ ∈ Map(N). Then the total space of the abstract open book with page
N and monodromy φ, is denoted by OB(N, φ), which is a closed nonorientable
3-manifold.

For all 1 ≤ j ≤ r, let pj be a point on the j-th boundary component of ∂N . Let
a1, . . . , ak, c1, . . . , cr be the standard generators of π1(N, p1), where ci’s correspond
to loops around the boundary components. Let φ∗ denote the action induced by
φ on π1(N, p1) and let µj be the loop [0, 1]/ ∼ based at pj in the mapping torus
Nφ = N × [0, 1]/ ∼, where (x, 1) ∼ (φ(x), 0). Then the fundamental group of Nφ

based at p1 has the following presentation:

〈a1, . . . , ak, c1, . . . , cr, µ1 |
k∏
i=1

a2i

r∏
j=1

cj = 1, µ1aiµ
−1
1 = φ∗ai, µ1cjµ

−1
1 = φ∗cj〉.

For each 1 ≤ j ≤ r, let δj ⊂ N be an arc connecting the base point p1 to pj . It follows
that µ1δjµ

−1
j φ∗(δ

−1
j ) bounds a disk in Nφ. To obtain OB(N, φ) from Nφ, we glue in

r copies of the solid torus where µj becomes null-homotopic for all j = 1, . . . , r.
Consequently, we get a presentation of π1(OB(N, φ), p1) as follows:

〈a1, . . . , ak, c1, . . . , cr |
k∏
i=1

a2i

r∏
j=1

cj = 1, ai = φ∗(ai), δj = φ∗(δj)〉.

One can, of course, calculate the first homology group H1(M) by abelianizing
π1(M).

6. MURASUGI SUM OF NONORIENTABLE OPEN BOOKS

Suppose that Mi = OB(Σi, φi) where Σi is an oriented surface and φi ∈ Map(Σi)
for i = 1, 2. Stallings [20] proved, using the language of fibered knots instead of
open books, thatM1#M2 = OB(Σ1∗Σ2, φ1◦φ2), where Σ1∗Σ2 denotes the Murasugi
sum (a.k.a. plumbing) of the pages Σ1 and Σ2. In the following, we state Stallings’
theorem without any assumption on the orientability of the pages but Gabai’s geo-
metric proof [7] of Stallings’ theorem holds true as long as the Murasugi sum is
performed along two-sided arcs on the pages.
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Proposition 6.1. Suppose that Mi = OB(Ni, φi) where Ni is a surface which is not
necessarily orientable and φi ∈Map(Ni) for i = 1, 2. Then M1#M2 = OB(N1 ∗N2, φ1 ◦
φ2), provided that the Murasugi sum N1 ∗N2 is performed along two-sided arcs on N1 and
N2.

A proof of Proposition 6.1 can be obtained by adapting Gabai’s geometric proof
in the orientable case described with a different point of view in Etnyre’s notes [5].
One can also consult [16], for a more general approach. Based on Proposition 6.1,
below we identify the total spaces of some open books with page K, but first we
prove a simple result for an arbitrary nonorientable surface with boundary.

Lemma 6.2. Let Ng,k denote a nonorientable surface of genus g with k ≥ 1 boundary
components. Then

OB(Ng,k, id) = #gS
2×̃S1#k−1S

2 × S1 = #g+k−1S
2×̃S1

where S2×̃S1 denotes the nonorientable S2-bundle over S1.

Proof. Let A denote an annulus, andM denote a Möbius band. Then it is easy to
see that OB(A, id) = S2 × S1 and OB(M, id) = S2×̃S1. The result follows from
Proposition 6.1, since Ng,k can be obtained by a Murasugi sum of g copies of M
and k − 1 copies of A. �

Note that an alternative 4-dimensional proof of Lemma 6.2 can be obtained as
follows. The 4-manifoldD2×Ng,k is obtained by attaching g nonorientable and k−1
orientable 1-handles to D4 and hence it is diffeomorphic to \gD3×̃S1\k−1D

3 × S1,
where D3×̃S1 denotes the nonorientable D3-bundle over S1. Therefore, we obtain
a diffeomorphism between their boundaries

#gS
2×̃S1#k−1S

2 × S1 = ∂(\gD
3×̃S1\k−1D

3 × S1) = ∂(D2 ×Ng,k) = OB(Ng,k, id).

Proposition 6.3. For any n ∈ Z, we have

OB(K, tnα) = L(|n|, 1)#S2×̃S1

where tα denotes the Dehn twist along the curve α in Figure 10. In particular,OB(K, id) =
S2 × S1#S2×̃S1 = #2S

2×̃S1, and OB(K, t±1α ) = S2×̃S1.

Proof. It is clear that K can be obtained by the Murasugi sum of A andM as de-
picted in Figure 10. Note that we have OB(A, tnα) = L(n, n − 1) for n ≥ 0 and
OB(A, tnα) = L(|n|, 1) for n < 0, as oriented 3-manifolds (cf. [6, Lemma 5.1]). We
also have OB(M, id) = S2×̃S1 by Lemma 6.2. Hence, by Proposition 6.1, we con-
clude that OB(K, tnα) = L(|n|, 1)#S2×̃S1 for all n ∈ Z, since there is an orientation-
reversing homeomorphism between the lens spaces L(n, 1) and L(n, n − 1) for
n > 0. �
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α

FIGURE 10

7. INFINITELY MANY ISOMORPHIC NONORIENTABLE OPEN BOOKS

Stukow [21] showed that the mapping class group Map(K) has a presentation
with two generators: the Y -homeomorphism y, and the Dehn twist tα about the
two-sided curve α in Figure 10, with only one relation: tαytα = y. It follows that
any element of Map(K) can be uniquely expressed as tmα yn for some integers m,n.

Definition 7.1. [17] The homeomorphism u = t−1α y ∈ Map(K) is called a crosscap
transposition.

Proposition 7.2. For u ∈Map(K), we have OB(K, u) = S2×̃S1.

Proof. The fundamental group of OB(K, u) based at a point p ∈ ∂K is isomor-
phic to Z, which can be verified by a calculation similar to the one given in the
proof of Theorem 4.1. Hence it follows that OB(K, u) = S2×̃S1, as a consequence
of the Poincaré conjecture. There is, however, an alternative proof avoiding the
use of the Poincaré conjecture as follows: The 3-manifold OB(K, u) has a (nonori-
entable) Heegaard splitting of genus two obtained from the genus two open book
and Ochiai [13] proved that any closed nonorientable 3-manifold with fundamen-
tal group Z, which admits a Heegaard splitting of genus two, is homeomorphic to
S2×̃S1. �

Lemma 7.3. For any m,n ∈ Z, the homeomorphism t2mα y2n+1 is conjugate to y2n+1 and
the homeomorphism t2m+1

α y2n+1 is conjugate to uy2n in Map(K).

Proof. For any m ∈ Z, using the relation tαytα = y, we get

t−mα (t2mα y)tmα = tmα yt
m
α = tm−1α ytm−1α = · · · = tαytα = y.

Similarly, for any m ∈ Z, we have

t−(m+1)
a (t2m+1

α y)tm+1
α = tmα yt

m+1
α = · · · = ytα = u.
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Next, we use the facts that y2 = t∂ (the boundary Dehn twist), and tα commutes
with t∂ , to finish the proof. For any m,n ∈ Z, we have

t−mα (t2mα y2n+1)tmα = t−mα (t2mα ytn∂)tmα = ytn∂ = y2n+1.

Similarly,

t−(m+1)
α (t2m+1

α y2n+1)tm+1
α = t−(m+1)

α (t2mα ytn∂)tm+1
α = utn∂ = uy2n.

�

Corollary 7.4. For any m ∈ Z, we have
• OB(K, t2mα y) = OB(K, y) = P 2 × S1, and
• OB(K, t2m+1

α y) = OB(K, u) = S2×̃S1.

Proof. The total spaces of two open books with fixed page are homeomorphic, pro-
vided that the monodromies of these open books are conjugate in the mapping
class group of the page. Therefore, Corollary 7.4 follows by combining Theo-
rem 4.1, Proposition 7.2, and Lemma 7.3. �

The next result immediately follows from Corollary 7.4.

Corollary 7.5. The product P 2 × S1 admits infinitely many isomorphic open books with
page K whose monodromies {t2mα y | m ∈ Z} are mutually nonisotopic in Map(K). Sim-
ilarly, S2×̃S1 admits infinitely many isomorphic open books with page K whose mon-
odromies {t2m+1

α y | m ∈ Z} are mutually nonisotopic in Map(K).

Let K̂ denote the (closed) Klein bottle and K̂×̃S1 the twisted Klein bottle bundle
over S1 with monodromy tα. Recall that t∂ denotes the boundary Dehn twist in
Map(K).

Proposition 7.6. For any n ∈ Z, with |n| ≥ 1, the 3-manifold OB(K, t±n∂ ) is Seifert
fibered over K̂. Moreover, we have OB(K, t±1∂ ) = K̂×̃S1.

Proof. The ±n surgery on a circle fiber of the bundle K̂ × S1, yields an open book
for the resulting 3-manifold with page K and monodromy t±n∂ , similar to the ori-
entable case discussed in [15]. For |n| ≥ 2, the resulting nonorientable 3-manifold
admits a Seifert fibration over K̂ with one singular fiber, while for |n| = 1, it is a
circle bundle over S1, which is homeomorphic to K̂×̃S1. �

8. STABLE EQUIVALENCE CLASSES OF NONORIENTABLE OPEN BOOKS

In the following, we assume that the 3-manifolds are closed and connected but
not necessarily orientable.
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A stabilization of an open book is defined as a finite sequence of Hopf plumb-
ings and two open books are called stably equivalent if they have isotopic stabiliza-
tions. Every open book on a 3-manifold induces a Heegaard splitting, where the
Heegaard surface is the union of two distinct pages. Moreover, if an open book is
stabilized, then the associated Heegaard splitting is also stabilized. Reidemeister
and Singer showed that any two Heegaard splittings of a 3-manifold admit iso-
topic stabilizations. Consequently, it is natural to ask whether any two open books
for a given 3-manifold are stably equivalent.

Using the celebrated Giroux correspondence between contact structures and
open books, as an essential ingredient, Giroux and Goodman [9] gave a complete
solution to this question in the orientable case: “Two open books for an oriented 3-
manifold admit isotopic stabilizations if and only if their associated oriented plane
fields are homologous.”

Although there is no contact structure on a nonorientable 3-manifold, one can still
consider an equivalence relation on the set of all open books for a nonorientable
3-manifold, induced by stabilizations.

Corollary 8.1. Each of P 2 × S1 and S2×̃S1 admits a genus one open book and a genus
two open book, which are not stably equivalent.

Proof. According to [8], P 2×S1 admits a nonorientable genus one open book whose
monodromy is a product of Dehn twists along two-sided curves. On the other
hand, as we showed in Theorem 3.1, the monodromy of Klassen’s genus two open
book for P 2 × S1 is the Y -homeomorphism of Lickorish. In addition, the mon-
odromy of any stabilization of Klassen’s open book will be the composition of the
Y -homeomorphism with a product of Dehn twists on two-sided curves. But since a
Y -homeomorphism cannot be expressed as a product of Dehn twists, we conclude
that Klassen’s open book for P 2 × S1 cannot be in the same stable equivalence
class with any open book whose monodromy is a product of Dehn twists, such as
those described in [8]. Therefore, the aforementioned genus one open book and
Klassen’s genus two open book are not stably equivalent.

As we discussed in Lemma 6.2, there is a genus one open book for S2×̃S1 with
page the Möbius band and monodromy the identity map. On the other hand, by
Proposition 7.2, S2×̃S1 also admits a genus two open book whose monodromy
is the crosscap transposition. Therefore, these two open books cannot be stably
equivalent, by an argument similar to that given in the first paragraph of the proof.

�

Corollary 8.2. Both Klassen’s genus two open book for P 2 × S1 and the genus two open
book for S2×̃S1 with monodromy the crosscap transposition cannot be destabilized.
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Proof. We observe that the genus two open books mentioned in the theorem cannot
be obtained by stabilizing a genus one open book, since a Y -homeomorphism and
hence a crosscap transposition only exist on a nonorientable surface of genus at
least two. �

Remark 8.3. We would like to point out that the “only if” part of the Giroux-
Goodman theorem holds true for nonorientable 3-manifolds as well. Note that
two oriented plane fields on an orientable 3-manifold are homologous if and only if
they are homotopic outside of a ball. Similar to the orientable case, there is a plane
field associated to a nonorientable open book obtained by extending the tangent
planes to the pages over the neighborhood of the binding, which is well-defined
up to homotopy. Moreover, Hopf plumbing yields an open book that coincides
with the original one in the complement of a ball and thus the associated plane
field remains the same outside of a ball. We conclude that the associated plane
fields of stably equivalent (orientable or nonorientable) open books are homotopic
outside of a ball. The proof of the converse direction of the Giroux-Goodman the-
orem, however, relies heavily on contact geometry using in particular the isotopy
classes of contact structures adapted to open books, rather than just the homotopy
classes of the associated plane fields. So, it is not immediately clear how to modify
the proof for nonorientable 3-manifolds.

REFERENCES

[1] M. Aschenbrenner, S. Friedl, and H. Wilton, 3-manifold groups. EMS Series of Lectures in Math-
ematics. European Mathematical Society (EMS), Zürich, 2015.
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