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ABSTRACT. We prove that any minimal weak symplectic filling of the canonical contact
structure on the unit cotangent bundle of a nonorientable closed connected smooth surface
other than the real projective plane is s-cobordant rel boundary to the disk cotangent bundle
of the surface. If the nonorientable surface is the Klein bottle, then we show that the
minimal weak symplectic filling is unique up to homeomorphism.

1. INTRODUCTION

LetM denote a closed and connected smooth surface which is not assumed to be orientable.
The bundle of cooriented lines tangent toM has a projection ontoM , which we denote by
π. For a pointq in M and a cooriented lineu in TqM , we denote byξ(q,u) the cooriented
plane described uniquely by the equationπ∗(ξ(q,u)) = u ∈ TqM . The canonical contact
structureξcan on the bundle of cooriented lines tangent toM consists of these planes (see,
for example, [19]).

The bundle of cooriented lines tangent toM can be identified with the unit cotangent bundle
ST ∗M , onceM is equipped with a Riemannian metric. Under this identification, the
contact structureξcan is given by the kernel of the Liouville1-form λcan. It follows that the
symplectic disk cotangent bundle(DT ∗M, dλcan) is a Weinstein and hence Stein filling of
the contact3-manifold(ST ∗M, ξcan) (cf. [3, Example 11.12 (2)]).

Let Σg denote the closed connected orientable smooth surface of genusg ≥ 0. The unit
cotangent bundleST ∗Σ0 is diffeomorphic to the real projective spaceRP3, andξcan is the
unique tight contact structure onRP3, up to isotopy (cf. [12]). McDuff [20] showed that
any minimal symplectic filling of(RP3, ξcan) is diffeomorphic toDT ∗Σ0.
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The unit cotangent bundleST ∗Σ1 is diffeomorphic to the3-torusT 3 and Eliashberg [5]
showed thatξcan is the unique strongly symplectically fillable contact structure onT 3, up
to contactomorphism. Moreover, Stipsicz [26] proved that any Stein filling of(T 3, ξcan) is
homeomorphic to the disk cotangent bundleDT ∗Σ1

∼= T 2×D2. This result was improved
by Wendl [28], who showed that, in fact, any minimal strong symplectic filling of(T 3, ξcan)
is symplectic deformation equivalent toDT ∗Σ1 equipped with its canonical symplectic
structure.

Recently, Sivek and Van Horn-Morris [25] proved that, forg ≥ 2, any Stein filling of the
contact3-manifold(ST ∗Σg, ξcan) is s-cobordant rel boundary to the disk cotangent bundle
DT ∗Σg.

Moreover, Li, Mak and Yasui proved that, forg ≥ 2, (ST ∗Σg, ξcan) admits minimal strong
symplectic fillings with arbitrarily largeb+2 (see [17, Proof of Corollary 1.6])) despite the
fact that any exact filling of(ST ∗Σg, ξcan) has the same integral homology and intersection
form asDT ∗Σg [17, Theorem 1.4].

In this paper, we study the topology of the symplectic fillings of the canonical contact struc-
ture ξcan on the unit cotangent bundle of anynonorientableclosed surface. A significant
feature in the nonorientable surface case is that the unit cotangent bundle equipped with
ξcan is a planar contact3-manifold, i.e., supported by a planar open book [22]. In contrast,
for g ≥ 1, (ST ∗Σg, ξcan) is not a planar contact3-manifold (cf. [6]). Therefore, the topol-
ogy of the symplectic fillings ofξcan in the nonorientable surface case is greatly restricted
by the results in [6], [21], [27], and [28].

According to a theorem of Niederkrüger and Wendl [21], any weak symplectic filling of a
planar contact3-manifold is symplectic deformation equivalent to a blow upof one of its
Stein fillings. Most importantly, every Stein filling of a planar contact3-manifold admits
an allowable Lefschetz fibration over the disk that fills the planar open book [28].

Here we show that the canonical contact structure on the unitcotangent bundle of any
nonorientable closed surface other than the real projective plane admits a unique minimal
weak symplectic filling, up to s-cobordism rel boundary. More precisely, we prove the
following.

Theorem 1.1. Let Nk denote the nonorientable closed smooth surface obtained bythe
connected sum ofk ≥ 1 copies of the real projective planeRP2. Then, fork ≥ 2, any
minimal weak symplectic filling of the canonical contact structureξcan on the unit cotangent
bundleST ∗Nk is s-cobordant rel boundary to the disk cotangent bundleDT ∗Nk.

Suppose thatX0 andX1 are compact (topological)4-manifolds such that∂X0 is homeo-
morphic to∂X1. ThenX0 andX1 are said to bes-cobordant rel boundary(cf. [7, page 89])
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if there exists a compact5-manifoldZ such that (i)X0 andX1 are disjoint submanifolds
of ∂Z, (ii) ∂Z \ int(X0 ∪X1) is homeomorphic to∂X0 × [0, 1] and (iii) for eachi = 0, 1,
the inclusionXi → Z is a simple homotopy equivalence. The5-manifoldZ is called an
s-cobordism betweenX0 andX1. It follows that ifX0 andX1 are s-cobordant rel bound-
ary, then they are simple homotopy equivalent, by definition. The reader can turn to [4] for
more on simple homotopy equivalences. Ifπ1(Z) is polycyclic for an s-cobordismZ, then
according to [7, 7.1A Theorem],Z is homeomorphic toX0 × [0, 1], and in particularX0 is
homeomorphic toX1.

Since the fundamental group of the Klein bottle is polycyclic, we have the following corol-
lary.

Corollary 1.2. Any minimal weak symplectic filling of the canonical contactstructureξcan
on the unit cotangent bundleST ∗N2 of the Klein bottleN2 is homeomorphic to the disk
cotangent bundleDT ∗N2.

The unit cotangent bundleST ∗N1 of the real projective planeN1 = RP
2 is diffeomor-

phic to the lens spaceL(4, 1) andξcan is the unique universally tight contact structure on
L(4, 1), up to contactomorphism. McDuff [20] showed that(L(4, 1), ξcan) has two minimal
symplectic fillings up to diffeomorphism:

(i) The disk cotangent bundleDT ∗N1, which is a rational homology4-ball, and

(ii) The disk bundle over the sphere with Euler number−4.

Both of these fillings are in fact Stein and clearly not homotopy equivalent (and hence not
s-cobordant), since the latter is simply-connected while the former is not.

Notation. If α is a simple closed curve on an oriented surfaceΣ, we denote the pos-
itive (a.k.a. right-handed) Dehn twist alongα by D(α). We useMap(Σ, ∂Σ) for the
surface mapping class group — the group of isotopy classes oforientation-preserving dif-
feomorphism of the surfaceΣ, where diffeomorphisms and isotopies are assumed to fix the
boundary∂Σ pointwise. We use functional notation for the products inMap(Σ, ∂Σ), i.e.,
D(β)D(α) means that we first applyD(α).

If (X,ω) is a symplectic4-manifold and we are only interested in its diffeomorphism type,
then we suppressω from the notation. Similarly, for a Stein surface(W,J), we suppress
the complex structureJ from the notation if it is irrelevant for the discussion. Thereader
is advised to turn to [23] for the background material that wewill use throughout the pa-
per.
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2. HOMOLOGY OF THE FILLINGS

Our goal in this section is to prove the following proposition.

Proposition 2.1. Suppose thatW is a minimal weak symplectic filling of(ST ∗Nk, ξcan).
Then

H1(W ;Z) = H1(DT
∗Nk;Z) = Z

k−1 ⊕ Z2,

and
H2(W ;Z) = H2(DT

∗Nk;Z) = 0

provided thatk ≥ 2.

Remark 2.2. Note that Proposition 2.1 does not hold fork = 1, since the contact3-
manifold (ST ∗N1 = L(4, 1), ξcan) has asimply-connectedStein filling, namely the disk
bundle over the sphere with Euler number−4, whose second homology group isZ.

We rely on the following results to prove Proposition 2.1.

Lemma 2.3 ([22]). LetV0, V1, . . . , Vk, Vk+1 be the simple closed curves shown in Figure 1
on the planar surfaceFk with 2k + 2 boundary components, and let

φk := D(V0)D(V1) · · ·D(Vk)D(Vk+1) ∈Map(Fk, ∂Fk).

Then, for allk ≥ 1, the open book(Fk, φk) is adapted to(ST ∗Nk, ξcan).

Remark 2.4. For anyk ≥ 1, the disk cotangent bundleDT ∗Nk is a Weinstein (and hence
Stein) filling [3, Example 11.12 (2)] of its boundary(ST ∗Nk, ξcan). To see this with an-
other point of view, one can directly check that the total space of the Lefschetz fibration
over the disk whose boundary has the induced open book decomposition(Fk, φk) given in
Lemma 2.3 is diffeomorphic to the disk cotangent bundleDT ∗Nk (cf. [22, Appendix]).

Theorem 2.5 (Niederkrüger and Wendl [21]). Every weak symplectic filling(X,ω) of a
planar contact3-manifold(Y, ξ) is symplectic deformation equivalent to a blow-up of a
Stein filling of(Y, ξ).

Note that the statement in Theorem 2.5 was proven for strong symplectic fillings in [28].

Theorem 2.6 (Wendl [28]). Every Stein filling of a planar contact3-manifold admits an
allowable Lefschetz fibration over the disk that fills the planar open book.

Remark 2.7. By combining Theorem 2.5 with Theorem 2.6, we conclude that any minimal
weak symplectic filling of a planar contact3-manifold admits an allowable Lefschetz fibra-
tion over the disk that fills the planar open book. Moreover, allowable Lefschetz fibrations
over the disk filling an open book (not necessarily planar) isgiven by positive factorizations
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FIGURE 1. The curvesV0, V1, . . . , Vk, Vk+1 on the planar surfaceFk.
Each boundary component ofFk , denoted bycj in the text, for j =
0, 1, 2, . . . , 2k + 1, is labeled byj in the figure.

of the monodromy of that open book into products of positive Dehn twists along homolog-
ically nontrivial curves (see, for example [1], [18]). Therefore, to classify minimal weak
symplectic fillings of a planar contact3-manifold, it suffices to study positive factorizations
of the monodromy of the planar open book.

Lemma 2.8. Assume thatk ≥ 3. Then any positive factorization ofφk in Lemma 2.3
consists of Dehn twistsD(V ′

0), D(V ′

1), . . . , D(V ′

k+1), where each curveV ′

j encloses the
same holes asVj , for j = 0, 1, . . . , k + 1.

Proof. In order to study positive factorizations of the given monodromy of a planar open
book, we make use of a technique due to Plamenevskaya and Van Horn-Morris [24] (see
also [14], [15]). Suppose that the monodromyφk in Lemma 2.3 has a factorization into
positive Dehn twists along some curves. In the following we will refer to any such curve
as amonodromycurve.
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Recall thatcj ’s are the boundary components of the planar surfaceFk depicted in Figure 1.
For eachj ∈ {0, 1, 2, . . . , 2k}, themultiplicityMj(φk) is defined as the number of mon-
odromy curves enclosingcj, and similarly, for eachi 6= j ∈ {0, 1, 2, . . . , 2k}, the joint
multiplicityMi,j(φk) is defined as the number of monodromy curves enclosingci andcj, in
any positive factorization ofφk. The point is that these multipilicities are independent of
the positive factorizations ofφk (see [14], [15]).

It is easy to compute the multiplicities and joint multiplicities of φk using the positive
factorization given in Lemma 2.3.

(1) For anyj ∈ {0, 1, 2, . . . , 2k},Mj = 2.

(2) For anyj ∈ {1, 2, . . . , 2k},M0,j = 1.

(3) For anyh ∈ {1, 3, . . . , 2k − 1} andl ∈ {2, 4, . . . , 2k},Mh,l = 0 if l 6= h+ 1.

(4) For anyh ∈ {1, 3, . . . , 2k − 1},Mh,h+1 = 1.

(5) For anyh1, h2 ∈ {1, 3, . . . , 2k − 1},Mh1,h2
= 1.

(6) For anyl1, l2 ∈ {2, 4, . . . , 2k},Ml1,l2 = 1.

We first claim that there is no boundary parallel monodromy curve in any positive factor-
ization ofφk, a proof of which is spelled out in the next four paragraphs.

Suppose that there is a monodromy curve which is parallel toc0. Then sinceM0 = 2, by
(1), there is another monodromy curve which enclosesc0 as well. Since, by(2),M0,j = 1
for any j ∈ {1, 2, . . . , 2k}, the second curve enclosingc0 must enclose allcj for j ∈
{1, 2, . . . , 2k}. This contradicts to(3) by takingh = 1 andl = 4.

Let i ∈ {1, 3, . . . , 2k−1}. Suppose that there is a monodromy curve which is parallel toci.
Then there is another monodromy curve enclosingci, since by(1),Mi = 2. But the second
curve enclosingci must encloseci+1 by (4) and allcj for j ∈ {0} ∪ {1, 3, . . . , 2k − 1}, by
(2) and(5). This contradicts to(3), by takingl = i+ 1 andh ∈ {1, 3, . . . , 2k − 1} \ {i}.

Let i ∈ {2, 4, . . . , 2k}. Suppose that there is a monodromy curve which is parallel toci.
Then there is another monodromy curve enclosingci, since by(1),Mi = 2. But the second
curve enclosingci must encloseci−1 by (4) and allcj for j ∈ {0, 2, 4, . . . , 2k}, by (2) and
(6). This contradicts to(3), by takingh = i− 1 andl ∈ {2, 4, . . . , 2k} \ {i}.

Finally, we observe that by(3), there is no monodromy curve which is parallel to the outer
boundary componentc2k+1. We only need to assume thatk ≥ 2 so far in the proof, since
(3) is vacuous fork = 1 (see Remark 2.9 (1)).

Next we note that, by(4), for any i ∈ {1, 3, . . . , 2k − 1}, there must be a monodromy
curve in the factorization enclosingci andci+1. We claim that this curve cannot enclose
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any other boundary components. This monodromy curve cannotenclosecj for any j ∈
{1, 2, . . . , 2k} \ {i, i + 1}, since by(3), Mi,j = 0 for all j ∈ {2, 4, . . . , 2k} \ {i + 1}
andMi+1,j = 0 for all j ∈ {1, 3, . . . , 2k − 1} \ {i}. Suppose thatc0 is enclosed by
this monodromy curve. Then, by(1) and (2), there must be another monodromy curve
enclosingc0 and allcj for j ∈ {1, 2, . . . , 2k} \ {i, i+ 1}. This contradicts to(3), provided
that k ≥ 3. For eachi ∈ {1, 3, . . . , 2k − 1}, we denote byV ′

h, the monodromy curve
enclosing onlyci andci+1, whereh = (i + 1)/2. Note that, fork = 2, there is another
possibility of configuration of monodromy curves, as explained in Remark 2.9 (2) below.

By (1) and(2), there must be two more monodromy curves in the factorization, in addition
to the ones described in the previous paragraph, both enclosing c0. We describe these in the
next two paragraphs.

One of these, which we denote byV ′

0 , must enclosec0 andc1 by (2). We claim thatV ′

0

enclosescj if and only if j ∈ {0} ∪ {1, 3, . . . , 2k − 1}. By (3), V ′

0 cannot enclosecl
for l ∈ {4, 6, . . . , 2k}. If we assume that it enclosesc2, then it cannot enclosecj for any
j ∈ {3, 5, . . . , 2k − 1} by (3), and therefore, by(1) and(2), there is another monodromy
curve enclosingc0 andcj for all j ∈ {3, 4, 5, . . . , 2k − 1, 2k}, which again contradicts to
(3), provided thatk ≥ 3. Suppose now thatV ′

0 does not enclosech for someh ∈ {3, 5,
. . . , 2k − 1}. Then there must be another monodromy curve enclosingc0, ch andcl for all
l ∈ {2, 4, . . . , 2k}, by (1) and(2). This contradicts to(3) for l 6= h + 1.

The last monodromy curve, which we denote byV ′

k+1, must enclosec0 and c2. By an
argument similar to the above paragraph,V ′

k+1 enclosescj if and only if j ∈ {0, 2, 4,
. . . , 2k}, provided thatk ≥ 3. There cannot be any further additional monodromy curves,
which is immediate from(1), (3)− (6). �

Remark 2.9. (1) In order to rule out the existence of boundary parallel monodromy
curves in the factorization, we used(3), which is vacuous fork = 1. As a matter of
fact,φ1 has two positive factorizations,

D(V0)D(V1)D(V2) = D(c0)D(c1)D(c2)D(c3),

the latter consisting of only boundary parallel curves. This equality in the mapping
class group is the well-known lantern relation.

(2) Fork = 2, there is another possibility of configuration of monodromycurves which
we can not rule out by the above argument. Namely, the four monodromy curves in
the factorization may enclose the following set of boundarycurves

{c0, c1, c2}, {c0, c3, c4}, {c1, c3}, {c2, c4},

respectively.
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Proof of Proposition 2.1.We apply Remark 2.7 to the monodromyφk of the planar open
book described in Lemma 2.3. Each positive factorization ofφk yields a Lefschetz fibra-
tion over the disk whose boundary has the induced open book decomposition(Fk, φk).
The regular fiber of this Lefschetz fibration isFk and the vanishing cycles are exactly the
monodromy curves in the given factorization. Therefore, one obtains a handlebody decom-
position and the corresponding Kirby diagram of the total space of the fibration as follows.

First of all, a neighborhood of the regular fiberFk is diffeomorphic toFk × D2 which
is obtained by attaching2k + 1 1-handles to the unique0-handle. In the corresponding
Kirby diagram, one can visualize the fiberFk as depicted in Figure 1, whose orientation
is induced from the standard orientation ofR

2. Note that for eachj ∈ {0, 1, 2, . . . , 2k},
the corresponding1-handle can be conveniently depicted as a dotted circle passing through
the hole labeled byj, and linking once the outer boundary component labeled by2k + 1.
In addition, a2-handle with framing−1 is attached along each monodromy curve in the
factorization, which can be visualized on the fiberFk.

By Remark 2.7, anyminimalweak symplectic fillingW of (ST ∗Nk, ξcan) is diffeomorphic
to a Lefschetz fibration over the disk which corresponds to some positive factorization of
φk. Moreover, by Lemma 2.8 and Remark 2.9 (2), each positive factorization ofφk has
k + 2 Dehn twists. Thus, the total space of the correponding Lefschetz fibration has a
handle decomposition consisting of a0-handle,2k + 1 1-handles andk + 2 2-handles.

Supposek ≥ 3. Then by Lemma 2.8, for anyj ∈ {0, 1, 2, . . . , k + 1}, the monodromy
curveV ′

j which appears in a factorization ofφk encloses the same holes asVj on the planar
surfaceFk. It follows that the linking number of the circleV ′

j with any dotted circle in
the corresponding Kirby diagram, is the same as the linking number ofVj with that dotted
circle. Hence we deduce (see, for example, [23, page 42]) that the homology groups of
the total space of the Lefschetz fibration is independent of the positive factorization ofφk.
As a consequence, since we already know one positive factorization ofφk which gives a
Lefschetz fibration on the disk cotangent bundleDT ∗Nk (see Remark 2.4), we conclude
that

H1(W ;Z) = H1(DT
∗Nk;Z) = H1(Nk;Z) = Z

k−1 ⊕ Z2,

and

H2(W ;Z) = H2(DT
∗Nk;Z) = H2(Nk;Z) = 0.

For k = 2, there are two possible configurations of monodromy curves,the standard one
as above and another one as described in Remark 2.9 (2). For the standard one, the proof
above is valid. The second configuration is a relabelling of the boundaries, and hence
induces the same Kirby diagram as the first one. Therefore, the homology groups are the
same as in the standard one. �
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3. HOMOTOPY TYPE OF THE FILLINGS

Our goal in this section is to prove Theorem 1.1 that we statedin the introduction. We
begin with some basic observations.

The unit cotangent bundleST ∗Nk is a circle bundle over the nonorientable surfaceNk

whose Euler number is equal to−χ(Nk) = k − 2. The fundamental group ofST ∗Nk is
given (cf. [13, page 91]) as follows:

π1(ST
∗Nk) =< a1, . . . , ak, t | ajta

−1
j = t−1,

k
∏

j=1

a2j = tk−2 > .

Here t represents the homotopy class of the circle fiber and it generates a cyclic normal
subgroup ofπ1(ST ∗Nk). After abelianization, we get

H1(ST
∗Nk;Z) =

{

Z
k−1 ⊕ Z2 ⊕ Z2, if k is even,

Z
k−1 ⊕ Z4, if k is odd.

Proposition 3.1. Any Stein filling of(ST ∗Nk, ξcan) is aspherical, provided thatk ≥ 2.

Proof. Suppose thatW is a Stein filling of(ST ∗Nk, ξcan). Then, sinceW has a handlebody
consisting of handles of index at most two, the inclusion map

i : ST ∗Nk = ∂W → W

induces a surjective homomorphism

i∗ : π1(ST
∗Nk) → π1(W )

and hence we obtain the following commutative diagram,

π1(ST
∗Nk)

i∗
//

f1
��

π1(W )

f2
��

H1(ST
∗Nk;Z)

i∗
// H1(W ;Z)

wheref1 andf2 are Hurewicz maps.

Let αj = i∗(aj), for j = 1, . . . , k, and letτ = i∗(t). Thenf2(αj), j = 1, . . . , k, andf2(τ)

generateH1(W ;Z). If k is even, then both
k
∑

j=1

f1(aj) andf1(t) are torsion of order2 in

H1(ST
∗Nk;Z). If k is odd, then

k
∑

j=1

f1(aj) is torsion of order 4 andf1(t) = 2
k
∑

j=1

f1(aj)

in H1(ST
∗Nk;Z). We know thatH1(W ;Z) = Z

k−1 ⊕ Z2, by Proposition 2.1. Thus
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k
∑

j=1

f2(αj) ∈ H1(W ;Z) is either trivial or torsion of order2 if k is even, and is torsion

of order2 if k is odd. Moreover,f2(αj) is non-torsion inH1(W ;Z) for j = 1, . . . , k.
Therefore, we can define a surjective homomorphismψ : H1(W ;Z) → Z2 such that
ψ(f2(αj)) = 1 for all j = 1, . . . , k andψ(f2(τ)) = 0.

Now consider the double covers ofST ∗Nk andW induced by the surjective homomor-
phisms

ψ ◦ f2 ◦ i∗ : π1(ST
∗Nk) → Z2 and ψ ◦ f2 : π1(W ) → Z2,

respectively. Since each generatoraj, for j = 1, . . . , k, is mapped to1 ∈ Z2, andt is
mapped to0 ∈ Z2, the double cover ofST ∗Nk is the unit cotangent bundleST ∗Σk−1,
whereΣk−1 is the closed orientable surface which is the double cover ofthe nonorientable
surfaceNk.

By [8], the canonical contact structure onST ∗Nk lifts to the canonical contact structure
onST ∗Σk−1 under this double cover. On the other hand, since any finite cover of a Stein
surface is Stein (cf. [10, page 436]), the corresponding double coverW ′ of W is a Stein
filling of (ST ∗Σk−1, ξcan). By [25, Proposition 4.9],W ′ is aspherical, i.e.,πn(W ′) = 0
for all n ≥ 2. HenceW is also aspherical, since it is well-known (see, for example, [11,
Proposition 4.1]) that higher homotopy groups are preserved under coverings. �

Next we compute the fundamental group of the fillings.

Proposition 3.2. If W is a Stein filling of(ST ∗Nk, ξcan), thenπ1(W ) = π1(Nk), provided
thatk ≥ 2.

Proof. Suppose thatW is a Stein filling of(ST ∗Nk, ξcan). Since〈t〉 is a normal subgroup in
π1(ST

∗Nk), its image〈τ〉 under the surjective homomorphismi∗ : π1(ST ∗Nk) → π1(W )
is a normal subgroup ofπ1(W ). Note thati∗ induces a surjective homomorphism

p : π1(Nk) → π1(W )/〈τ〉.

Let W ′ be the double cover ofW as in the proof of Proposition 3.1. Then the surjective
homomorphismi∗ : π1(ST ∗Σk−1) → π1(W

′) induces a surjective homomorphism

p′ : π1(Σk−1) → π1(W
′)/〈τ ′〉,

whereτ ′ = i∗(t
′), andt′ represents the homotopy class of the circle fiber ofST ∗Σk−1.

Using the same argument as in the proof of [25, Proposition 4.7], we haveker(p) = ker(p′),
whereπ1(Σk−1) is identified as a subgroup ofπ1(Nk). Now, sinceW ′ is a Stein filling of
(ST ∗Σk−1, ξcan), we conclude that the surjective homomorphismp′ above is also injective
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by [25, Proposition 4.8]. Hence we getker(p) = ker(p′) = 0. As a consequence, we have
a short exact sequence

1 → 〈τ〉 → π1(W ) → π1(Nk) → 1.

Since〈τ〉 is a cyclic subgroup ofπ1(W ), isomorphic toZm for some non-negative integer
m, whereZ0 = Z, it follows that the short exact sequence above can be expressed as

1 → Zm → π1(W ) → π1(Nk) → 1.

Our goal is to show thatm = 1. In order to achieve our goal, we first observe that
H2(π1(W );Z) = H2(W ;Z), sinceW is aspherical by Proposition 3.1. But since we have
H2(W ;Z) = 0 by Proposition 2.1, we conclude thatH2(π1(W );Z) = 0.

Next we use the Lyndon/Hochschild-Serre spectral sequence(see, for example, [2])

E2
p,q = Hp(π1(Nk);Hq(Zm;Z)) =⇒ Hp+q(π1(W );Z)

to computeH2(π1(W );Z), which a priori may depend onm.

Based on the facts thatH0(Zm;Z) = Z, H1(Zm;Z) = Zm,H2(Zm;Z) = 0, for allm ≥ 0,
and that the nonorientable surfaceNk is aspherical fork ≥ 2, we obtain

E2
0,2 = H0(π1(Nk);H2(Zm;Z)) = H0(Nk; 0) = 0,

E2
2,0 = H2(π1(Nk);H0(Zm;Z)) = H2(Nk;Z) = 0,

and

E2
1,1 = H1(π1(Nk);H1(Zm;Z)) = H1(Nk;Zm) =

{

(Zm)
k−1 ⊕ Z2, m is even,

(Zm)
k−1, m is odd.

Since the cohomological dimension of the surface groupπ1(Nk) is equal to2 for k > 1 (cf.
[2, Page 185]),E2 page is supported byp ∈ {0, 1, 2}. It follows that

E∞

0,2 = E2
0,2, E

∞

1,1 = E2
1,1, andE∞

2,0 = E2
2,0.

Hence we have

H2(π1(W );Z) = E∞

0,2 ⊕ E∞

1,1 ⊕ E∞

2,0 =

{

(Zm)
k−1 ⊕ Z2, m is even,

(Zm)
k−1, m is odd.

Thereforem = 1, sinceH2(π1(W );Z) = 0, and thusπ1(W ) = π1(Nk). �
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We are now ready to prove our main result which is Theorem 1.1.

Proof of Theorem 1.1.Suppose thatk ≥ 2 andW is a Stein filling of the contact3-
manifold (ST ∗Nk, ξcan). We will show thatW is s-cobordant rel boundary to the disk
cotangent bundleDT ∗Nk, using the same argument as in the proof of [25, Theorem 4.10].
For the sake of completeness, we outline the argument here. We first observe thatW is
aspherical by Proposition 3.1, andπ1(W ) = π1(Nk), a surface group, by Proposition 3.2.
According to [16, Corollary 1.23], such a compact manifoldW is topologically s-rigid.
This condition implies that it suffices to find a homotopy equivalenceρ : DT ∗Nk → W
which restricts to a homeomorphismST ∗Nk → ∂W in order to prove thatDT ∗Nk is
s-cobordant toW .

Now consider the standard handlebody decomposition ofDT ∗Nk consisting of a0-handle,
k 1-handles and a2-handle. By turning it upside down, we can constructDT ∗Nk by at-
taching a2-handle,k 3-handles and a4-handle to a thickenedST ∗Nk. Next we define a
homeomorphismρ : ST ∗Nk → ∂W sending a circle fiber to a circle fiber. Note that the
attaching curve of the (upside down)2-handle is a circle fiber in∂W which is nullhomo-
topic inW . Therefore,ρ extends over the2-handle ofDT ∗Nk. Moreover,ρ extends over
the handles of index greater than2, sinceW is aspherical. Furthermore, the map induced
by ρ takes the normal subgroup ofπ1(ST ∗Nk) generated by the circle fiber to the normal
subgroup ofπ1(∂W ) generated by the circle fiber, and hence descends to an isomorphism
between the quotientsπ1(DT ∗Nk) andπ1(W ). It follows that ρ : DT ∗Nk → W is a
homotopy equivalence by Whitehead’s Theroem.

To finish the proof, we simply observe that anyminimal weak symplectic filling of the
planar contact3-manifold (ST ∗Nk, ξcan) is deformation equivalent to a Stein filling by
Theorem 2.5. �
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