FILLINGS OF UNIT COTANGENT BUNDLES OF NONORIENTABLE
SURFACES

YOULIN LI AND BURAK OZBAGCI

ABSTRACT. We prove that any minimal weak symplectic filling of the caival contact
structure on the unit cotangent bundle of a nonorientableed connected smooth surface
other than the real projective plane is s-cobordant rel dannto the disk cotangent bundle
of the surface. If the nonorientable surface is the Kleintlbpthen we show that the
minimal weak symplectic filling is unique up to homeomorphis

1. INTRODUCTION

Let M denote a closed and connected smooth surface which is nwhadgo be orientable.
The bundle of cooriented lines tangentitbhas a projection ontd/, which we denote by
7. For a pointg in M and a cooriented line in 7, M/, we denote by, ., the cooriented
plane described uniquely by the equations.)) = v € T,M. The canonical contact
structuret,..,, on the bundle of cooriented lines tangent\foconsists of these planes (see,
for example,[[19]).

The bundle of cooriented lines tangentitocan be identified with the unit cotangent bundle
ST*M, once M is equipped with a Riemannian metric. Under this identiiasat the
contact structuré,,,, is given by the kernel of the Liouville-form \.,,,. It follows that the
symplectic disk cotangent bundl®T* M, d).,,) is a Weinstein and hence Stein filling of
the contac8-manifold (ST*M, £..,,) (cf. [3, Example 11.12 (2)]).

Let ¥, denote the closed connected orientable smooth surfacenabge> 0. The unit
cotangent bundI&T*Y, is diffeomorphic to the real projective spaR&?, and¢,,,, is the
unique tight contact structure &iP*, up to isotopy (cf. [[12]). McDuff[[20] showed that
any minimal symplectic filling of RP?, £,,,,,) is diffeomorphic toDT*¥.
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The unit cotangent bundl&7*Y; is diffeomorphic to thes-torus7™ and Eliashberg[5]
showed that.,, is the unique strongly symplectically fillable contact sture on7™, up
to contactomorphism. Moreover, Stipsi€z][26] proved that Stein filling of (72, .4, ) iS
homeomorphic to the disk cotangent bunfig*¥; = 72 x D2. This result was improved
by Wendl [28], who showed that, in fact, any minimal stronmgjectic filling of (73, £..,,)

is symplectic deformation equivalent 073, equipped with its canonical symplectic
structure.

Recently, Sivek and Van Horn-Morris [25] proved that, for 2, any Stein filling of the
contact3-manifold (ST*%,, {..,,) is s-cobordant rel boundary to the disk cotangent bundle
DT*%,.

Moreover, Li, Mak and Yasui proved that, for> 2, (ST*X,, £..,,) admits minimal strong
symplectic fillings with arbitrarily largeé; (see [17, Proof of Corollary 1.6])) despite the
fact that any exact filling of ST*%,, £..,,) has the same integral homology and intersection
form asDT*Y, [17, Theorem 1.4].

In this paper, we study the topology of the symplectic filraf the canonical contact struc-
ture .., on the unit cotangent bundle of angnorientableclosed surface. A significant
feature in the nonorientable surface case is that the utahgent bundle equipped with
£.an IS @ planar contact-manifold, i.e., supported by a planar open bdok [22]. Intcast,
forg > 1, (ST*%,, ) IS NOt a planar contadtmanifold (cf. [6]). Therefore, the topol-
ogy of the symplectic fillings of..,, in the nonorientable surface case is greatly restricted

by the results in[6],[121],127], and [28].

According to a theorem of Niederkriiger and Wendl [21], amalvsymplectic filling of a
planar contac8-manifold is symplectic deformation equivalent to a blowafne of its
Stein fillings. Most importantly, every Stein filling of a plar contacB-manifold admits
an allowable Lefschetz fibration over the disk that fills thenar open book [28].

Here we show that the canonical contact structure on thecaténgent bundle of any
nonorientable closed surface other than the real progplane admits a unique minimal
weak symplectic filling, up to s-cobordism rel boundary. Elqrecisely, we prove the
following.

Theorem 1.1. Let N, denote the nonorientable closed smooth surface obtainetthdoy
connected sum of > 1 copies of the real projective plarfiRP. Then, fork > 2, any
minimal weak symplectic filling of the canonical contactistureé,.,,, on the unit cotangent
bundleST* N, is s-cobordant rel boundary to the disk cotangent burddig N,.

Suppose thak, and X; are compact (topological}manifolds such that X, is homeo-
morphic too.X;. ThenX, and.X; are said to be-cobordant rel boundarfcf. [[7, page 89])
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if there exists a compaétmanifold Z such that (i).X, and X, are disjoint submanifolds
of 07, (ii) 07 \ int(X, U X;) is homeomorphic té& X, x [0, 1] and (iii) for eachi = 0, 1,
the inclusionX; — 7 is a simple homotopy equivalence. Thananifold Z is called an
s-cobordism betweeX, and X;. It follows that if X, and X, are s-cobordant rel bound-
ary, then they are simple homotopy equivalent, by definitiime reader can turn tol[4] for
more on simple homotopy equivalencesr{fZ7) is polycyclic for an s-cobordisr#, then
according to([7, 7.1A Theorem}, is homeomorphic td, x [0, 1], and in particularX is
homeomorphic toX;.

Since the fundamental group of the Klein bottle is polyaycie have the following corol-
lary.

Corollary 1.2. Any minimal weak symplectic filling of the canonical conttofictures,.,,
on the unit cotangent bundI€7™ N, of the Klein bottleN; is homeomorphic to the disk
cotangent bundl&®T™ N;.

The unit cotangent bundI§7™* N, of the real projective plan&/;, = RP? is diffeomor-
phic to the lens spack(4, 1) and¢,,, is the unique universally tight contact structure on
L(4,1), up to contactomorphism. McDuff[20] showed tfia{4, 1), {..,) has two minimal
symplectic fillings up to diffeomorphism:

(i) The disk cotangent bundlB7™* N, which is a rational homology-ball, and
(ii) The disk bundle over the sphere with Euler number.

Both of these fillings are in fact Stein and clearly not honpgtequivalent (and hence not
s-cobordant), since the latter is simply-connected whiéeformer is not.

Notation. If « is a simple closed curve on an oriented surfagewve denote the pos-
itive (a.k.a. right-handed) Dehn twist alomgby D(«). We useMap(X, 0%) for the
surface mapping class group — the group of isotopy classedeaitation-preserving dif-
feomorphism of the surface, where diffeomorphisms and isotopies are assumed to fix the
boundaryoy: pointwise. We use functional notation for the productddap(>, 0%), i.e.,
D(5)D(«) means that we first appli («).

If (X,w) is asymplectici-manifold and we are only interested in its diffeomorphisyet,
then we suppress from the notation. Similarly, for a Stein surfa¢®’, .J), we suppress
the complex structurd from the notation if it is irrelevant for the discussion. Tieader
is advised to turn td [23] for the background material thatwit use throughout the pa-
per.



4 YOULIN LI AND BURAK OZBAGCI

2. HOMOLOGY OF THE FILLINGS

Our goal in this section is to prove the following propogitio

Proposition 2.1. Suppose thall” is a minimal weak symplectic filling 667 Ny, &can)-
Then
H\(W;Z) = H/(DT*Ny; Z) = ZF' @ Z,,
and
Hy(W;Z) = Hy(DT*Ny; Z) = 0
provided thatt > 2.

Remark 2.2. Note that Propositiof 2.1 does not hold for= 1, since the contac3-
manifold (ST*N; = L(4,1),&.n) has asimply-connectetein filling, namely the disk
bundle over the sphere with Euler numbet, whose second homology groupZs

We rely on the following results to prove Proposition]2.1.

Lemma 2.3 ([22]). LetVy, Vi, ..., Vi, Viy1 be the simple closed curves shown in Figure 1
on the planar surfacé) with 2k + 2 boundary components, and let

¢ = D(Vo)D(V1) - - D(Vi,) D(Viey1) € Map(Fy,, OF).
Then, for allk > 1, the open bookF}, ¢y.) is adapted tq.ST™* N, &ean)-

Remark 2.4. For anyk > 1, the disk cotangent bunde7T* N, is a Weinstein (and hence
Stein) filling [3, Example 11.12 (2)] of its boundaf$T™* Ny, {.qn)- TO see this with an-
other point of view, one can directly check that the totalcgpaf the Lefschetz fibration
over the disk whose boundary has the induced open book dexsitiop ( 7y, ¢x) given in
LemmdZ.3 is diffeomorphic to the disk cotangent bundIg* NV, (cf. [22, Appendix]).

Theorem 2.5 (Niederkriiger and Wendl [21])Every weak symplectic fillingX, w) of a
planar contact3-manifold (Y, ¢) is symplectic deformation equivalent to a blow-up of a
Stein filling of(Y’, &).

Note that the statementin Theoreml2.5 was proven for strgmgkectic fillings in [28].

Theorem 2.6 (Wendl [28]) Every Stein filling of a planar contagtmanifold admits an
allowable Lefschetz fibration over the disk that fills thenalaopen book.

Remark 2.7. By combining Theorern 215 with Theorém P.6, we conclude thgainimal
weak symplectic filling of a planar contagtmanifold admits an allowable Lefschetz fibra-
tion over the disk that fills the planar open book. Moreovkoyeable Lefschetz fibrations
over the disk filling an open book (not necessarily planag)usn by positive factorizations
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FIGURE 1. The curvesV;, Vi,..., Vi, Vi1 on the planar surface.
Each boundary component @, , denoted byc; in the text, forj =
0,1,2,...,2k + 1, is labeled byj in the figure.

of the monodromy of that open book into products of positienbtwists along homolog-
ically nontrivial curves (see, for example [1], [18]). Tkére, to classify minimal weak
symplectic fillings of a planar contag8tmanifold, it suffices to study positive factorizations
of the monodromy of the planar open book.

Lemma 2.8. Assume that > 3. Then any positive factorization @f, in Lemma 2.3
consists of Dehn twist® (1), D(VY), ..., D(V(,,), where each curvé&’ encloses the
same holes ag, forj =0,1,...,k+ 1.

Proof. In order to study positive factorizations of the given morowdy of a planar open
book, we make use of a technique due to Plamenevskaya and &f@aNtbrris [24] (see
also [14], [15]). Suppose that the monodromyin Lemmal2.B has a factorization into
positive Dehn twists along some curves. In the following wk nefer to any such curve
as amonodromycurve.
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Recall thai;’s are the boundary components of the planar surfaagepicted in Figurg]1.
For eachj € {0,1,2, ...,2k}, themultiplicity M, (¢;) is defined as the number of mon-
odromy curves enclosing;, and similarly, for eacli # j € {0,1,2, ..., 2k}, thejoint
multiplicity M; ;(¢x) is defined as the number of monodromy curves enclasiagdc;, in
any positive factorization of,. The point is that these multipilicities are independent of
the positive factorizations af;, (see [14],[15]).

It is easy to compute the multiplicities and joint multiplies of ¢, using the positive
factorization given in Lemma2.3.

(1) Foranyj € {0,1,2,...,2k}, M; = 2.

(2) Foranyj € {1,2,...,2k}, My; = 1.

(3) Foranyh € {1,3,...,2k—1}andl € {2,4,...,2k}, M), =0if [ # h + 1.
(4) Foranyh € {1,3,...,2k — 1}, M} 41 = 1.

(5) Foranyhy, he € {1,3,...,2k — 1}, My, p, = 1.

(6) Foranyly,ly € {2,4,...,2k}, M, 4, = 1.

We first claim that there is no boundary parallel monodromyeun any positive factor-
ization of ¢, a proof of which is spelled out in the next four paragraphs.

Suppose that there is a monodromy curve which is paralle).td hen sincell, = 2, by
(1), there is another monodromy curve which enclasess well. Since, by2), M, ; =1

forany;j € {1,2,...,2k}, the second curve enclosing must enclose alt; for j €
{1,2,...,2k}. This contradicts t@3) by takingh = 1 and! = 4.

Leti € {1,3,...,2k—1}. Suppose that there is a monodromy curve which is paraltel to
Then there is another monodromy curve enclosingince by(1), M; = 2. But the second
curve enclosing; must enclose;; by (4) and allc; for j € {0} U{1,3,...,2k — 1}, by
(2) and(5). This contradicts t@3), by takingl =i + 1 andh € {1,3,...,2k — 1} \ {i}.
Let: € {2,4,...,2k}. Suppose that there is a monodromy curve which is parallel. to
Then there is another monodromy curve enclosingince by(1), M; = 2. But the second
curve enclosing; must enclose;_; by (4) and allc; for j € {0,2,4, ...,2k}, by (2) and

(6). This contradicts t@3), by takingh =i — 1 andl € {2,4, ...,2k} \ {i}.

Finally, we observe that b§3), there is no monodromy curve which is parallel to the outer
boundary component, ;. We only need to assume thiat> 2 so far in the proof, since
(3) is vacuous fok = 1 (see Remark 219 (1)).

Next we note that, by4), for anyi € {1,3, ...,2k — 1}, there must be a monodromy
curve in the factorization enclosing andc¢; ;. We claim that this curve cannot enclose
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any other boundary components. This monodromy curve caemzosec; for any j €
{1,2,...,2k} \ {i,i + 1}, since by(3), M,;; = Oforall j € {2,4,...,2k} \ {i + 1}
andM,.,; = O0forall j € {1,3,...,2k — 1} \ {i}. Suppose that, is enclosed by
this monodromy curve. Then, byl) and (2), there must be another monodromy curve
enclosings, and alle; for j € {1,2,...,2k} \ {i,7 + 1}. This contradicts t¢3), provided
thatk > 3. For eachi € {1,3,...,2k — 1}, we denote by}, the monodromy curve
enclosing onlyc; ande; 1, whereh = (i + 1)/2. Note that, fork = 2, there is another
possibility of configuration of monodromy curves, as expéal in Remark 219 (2) below.

By (1) and(2), there must be two more monodromy curves in the factorimatioaddition
to the ones described in the previous paragraph, both englas We describe these in the
next two paragraphs.

One of these, which we denote bjf, must enclose, andc¢; by (2). We claim thatl
encloses:; if and only if j € {0} U{1,3, ...,2k — 1}. By (3), Vj cannot enclose,
forl € {4,6,...,2k}. If we assume that it encloses, then it cannot enclose for any
j€13,5,...,2k — 1} by (3), and therefore, byl) and(2), there is another monodromy
curve enclosing, andc; for all j € {3,4,5,...,2k — 1,2k}, which again contradicts to
(3), provided that: > 3. Suppose now thdt; does not enclose, for someh € {3,5,
...,2k — 1}. Then there must be another monodromy curve enclasing, andc; for all

1 €{2,4,...,2k}, by (1) and(2). This contradicts t@3) for i # h + 1.

The last monodromy curve, which we denote 1§ ,, must enclose;, andc,. By an
argument similar to the above paragrapff, , encloses:; if and only if j € {0,2,4,
..., 2k}, provided that: > 3. There cannot be any further additional monodromy curves,
which is immediate fron{1), (3) — (6). O

Remark 2.9. (1) In order to rule out the existence of boundary parallehodromy
curves in the factorization, we uség)), which is vacuous fok = 1. As a matter of
fact, ¢, has two positive factorizations,

D(Vo)D(V1)D(V2) = D(co) D(er) D(e2) D(es),

the latter consisting of only boundary parallel curves.séquality in the mapping
class group is the well-known lantern relation.

(2) Fork = 2, there is another possibility of configuration of monodrazayes which
we can not rule out by the above argument. Namely, the fouroai@my curves in
the factorization may enclose the following set of boundamyes

{co,c1,c2}, {co, 3, cat, {c1,e3}, {e2, cu},

respectively.



8 YOULIN LI AND BURAK OZBAGCI

Proof of Propositioi 2]1We apply Remark 2]7 to the monodromy of the planar open
book described in Lemnia 2.3. Each positive factorization,ofields a Lefschetz fibra-
tion over the disk whose boundary has the induced open boobngegosition(Fy, ¢y).
The regular fiber of this Lefschetz fibration # and the vanishing cycles are exactly the
monodromy curves in the given factorization. Therefores obtains a handlebody decom-
position and the corresponding Kirby diagram of the totalcspof the fibration as follows.

First of all, a neighborhood of the regular fib&} is diffeomorphic toF,, x D? which

is obtained by attachingk + 1 1-handles to the unique-handle. In the corresponding
Kirby diagram, one can visualize the fib&}f, as depicted in Figurel 1, whose orientation
is induced from the standard orientation®f. Note that for eachy € {0,1,2,...,2k},

the corresponding-handle can be conveniently depicted as a dotted circlengagsough
the hole labeled by, and linking once the outer boundary component labelegiby 1.

In addition, a2-handle with framing—1 is attached along each monodromy curve in the
factorization, which can be visualized on the filber

By RemarK2.V7, anyninimalweak symplectic fillingV of (ST* Ny, £...) is diffeomorphic
to a Lefschetz fibration over the disk which corresponds toespositive factorization of
¢r. Moreover, by Lemma 28 and Remark]2.9 (2), each positiveofaation of ¢, has
k + 2 Dehn twists. Thus, the total space of the correponding lbefizcfibration has a
handle decomposition consisting ofdandle 2k + 1 1-handles and + 2 2-handles.

Supposé: > 3. Then by Lemm& 218, for any € {0,1,2,...,k + 1}, the monodromy
curveV; which appears in a factorization ¢f encloses the same holeslgson the planar
surfaceF}.. It follows that the linking number of the circlg] with any dotted circle in
the corresponding Kirby diagram, is the same as the linkumglver ofV/; with that dotted
circle. Hence we deduce (see, for examgle] [23, page 42f)thieahomology groups of
the total space of the Lefschetz fibration is independertt@positive factorization af,.
As a consequence, since we already know one positive faatam of ¢, which gives a
Lefschetz fibration on the disk cotangent bundlé* N, (see Remark 214), we conclude
that

H\(W;Z) = Hy(DT*Ny; Z) = Hi(Ni 2) = 2 @ Ly,
and
Hy(W3Z) = Hy(DT" Ny Z) = Hy(Nyi; Z) = 0.

For k = 2, there are two possible configurations of monodromy curhessstandard one

as above and another one as described in Remadrk 2.9 (2). éstahdard one, the proof
above is valid. The second configuration is a relabellinghef houndaries, and hence
induces the same Kirby diagram as the first one. Therefoeehdmology groups are the
same as in the standard one. O
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3. HOMOTOPY TYPE OF THE FILLINGS

Our goal in this section is to prove Theorém]1.1 that we statetie introduction. We
begin with some basic observations.

The unit cotangent bundI87T* N, is a circle bundle over the nonorientable surfage
whose Euler number is equal tox(N,) = k£ — 2. The fundamental group &7 Ny, is
given (cf. [13, page 91]) as follows:

k
T (ST*Ny) =< aq,...,ax,t | ajtaj_l =t Ha? =th2 >
j=1
Heret represents the homotopy class of the circle fiber and it géeem@ cyclic normal
subgroup ofr (ST* Ny ). After abelianization, we get
Zk1 & Zo P ZQ, if kis even,

1 k Z) {Z’“‘I@sz, if £ is odd.

Proposition 3.1. Any Stein filling of ST* Ny, £..,,) is aspherical, provided thdt > 2.

Proof. Suppose thatl” is a Stein filling of(ST* Ny, £..,). Then, sincéV has a handlebody
consisting of handles of index at most two, the inclusion map

i:ST*Ny =0W — W
induces a surjective homomorphism
it T (ST Ng) — m (W)
and hence we obtain the following commutative diagram,

T

Wl(ST*Nk) 71‘1(W)

| E

Hy(ST"Ny; Z) Hy(W; Z)
where f; and f, are Hurewicz maps.
Leta; =i.(a;), forj =1,...,k, and letr = i.(t). Thenfy(«;), j = 1,...,k, andf(7)
generate, (W;Z). If k is even, then botlfj1 fi(a;) and f;(t) are torsion of orde in

=

k k
H,(ST*Ny;Z). If kis odd, then)_ fi(a;) is torsion of order 4 andf,(t) = 2 " fi(a;)
j=1 j=1

in H,(ST*Ny;7Z). We know thatH,(W;Z) = Z*~' @ Z,, by Propositiof 2]1. Thus
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k

> faley) € Hi(W;Z) is either trivial or torsion of orde? if % is even, and is torsion
j=1

of order2 if k£ is odd. Moreover.f>(«a;) is non-torsion inH,(W;Z) for j = 1,..., k.
Therefore, we can define a surjective homomorphism H,(W;Z) — Z, such that

U(foloy)) =1forall j =1,..., k andy(fo(r)) = 0.

Now consider the double covers §f* N, and W induced by the surjective homomor-
phisms

’(/) o fg 0y : Wl(ST*Nk) — 2y and @D o f2 : 7T1(W) — Lo,
respectively. Since each generatgr for j = 1,...,k, is mapped ta € Z,, andt is
mapped td) € Z,, the double cover obT™* N, is the unit cotangent bundI€7T*X;_,

whereX,_; is the closed orientable surface which is the double covérehonorientable
surfaceN,.

By [8], the canonical contact structure 7™ N, lifts to the canonical contact structure
on ST*¥;_; under this double cover. On the other hand, since any finieroof a Stein
surface is Stein (cf.[[10, page 436]), the correspondincbtioaoveri?V’ of 1/ is a Stein
filling of (ST*X;_1,&an)- By [25, Proposition 4.9])V" is aspherical, i.es,, (W) = 0
for all n > 2. HencelV is also aspherical, since it is well-known (see, for examl,
Proposition 4.1]) that higher homotopy groups are presewveler coverings. U

Next we compute the fundamental group of the fillings.

Proposition 3.2. If W is a Stein filling of(ST™* Ny, &can), thenm (W) = 1 (Ny), provided
thatk > 2.

Proof. Suppose thdt/ is a Stein filling of(ST™* Ny, £..,, ). Since(t) is a normal subgroup in
m (ST*Ny), its image(r) under the surjective homomorphism: 7, (ST*Ny) — m (W)
is a normal subgroup of; (/). Note that,, induces a surjective homomorphism

p:m(Ng) = m (W) /(T).
Let W’ be the double cover df” as in the proof of Propositidn 3.1. Then the surjective
homomorphismi, : 7 (ST*%;_1) — w1 (W’) induces a surjective homomorphism
P m(Bp-) = m(W)/(7),
wherer’ = i, (t'), andt’ represents the homotopy class of the circle fibesBf>;_;.

Using the same argument as in the proof of [25, Propositioh we haveker(p) = ker(p’),
wherer;(3;_1) is identified as a subgroup af (N;). Now, sincel/’ is a Stein filling of
(ST*Xk_1,&an), We conclude that the surjective homomorphisrabove is also injective
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by [25, Proposition 4.8]. Hence we detr(p) = ker(p’) = 0. As a consequence, we have
a short exact sequence

1= (1) > m (W) = m (Ng) — 1.
Since(r) is a cyclic subgroup of; (W), isomorphic taz,, for some non-negative integer
m, whereZ, = 7Z, it follows that the short exact sequence above can be esguies

1= Zpy = m (W) = m (V) — 1.

Our goal is to show that» = 1. In order to achieve our goal, we first observe that
Hy(m (W); Z) = Ho(W; Z), sincelV is aspherical by Propositign 3.1. But since we have
Hy(W;Z) = 0 by Proposition 2]1, we conclude thét(r,(W); Z) = 0.

Next we use the Lyndon/Hochschild-Serre spectral sequ@ees for examplel, [2])
By, = Hy(m(Ny); H(Zn; Z)) = Hyso(m(W); Z)
to computeH, (7, (W); Z), which a priori may depend am.

Based on the facts thal)(Z,,; Z) = Z, H1(Z,; Z) = L, Hy(Zn; Z) = 0, for allm > 0,
and that the nonorientable surfabg is aspherical fok > 2, we obtain

Ej o = Ho(m(Ny); Hy(Z; Z2)) = Ho(Ny; 0) = 0,

E2270 = Hg(?Tl(Nk)7 H(](Zm7Z)) = Hg(Nk,Z) = 0,
and

(Z)*~t @ Zy, mis even,

Bty = Hi(m(Ny); Hi(Zn; Z)) = Hi(Ni; Zin) = {(Zm)k—l’ mis odd.

Since the cohomological dimension of the surface groupV;.) is equal ta2 for £ > 1 (cf.
[2, Page 185])E? page is supported by e {0, 1, 2}. It follows that

oo 2 oo 2 0o 2
Egy = Ey,, BTG = Eiy, andEy, = Ey .

Hence we have

(Z)~Y @® Zo, mis even,
(Zip )+ 1, m is odd.

Thereforem = 1, sinceHs(m (W); Z) = 0, and thusr (W) = m; (Ny). O
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We are now ready to prove our main result which is Thedrern 1.1.

Proof of Theorerh 111Suppose that > 2 and IV is a Stein filling of the contacs-
manifold (ST* Ny, &..n). We will show thatiV is s-cobordant rel boundary to the disk
cotangent bundI®T™* N, using the same argument as in the proof of [25, Theorem 4.10]
For the sake of completeness, we outline the argument heeefir§V/ observe thaty is
aspherical by Propositidn 3.1, and(WW) = 7,(N,), a surface group, by Propositibn13.2.
According to [16, Corollary 1.23], such a compact maniféldis topologically s-rigid.
This condition implies that it suffices to find a homotopy eglencep : DT*N, — W
which restricts to a homeomorphis&7™* N, — OW in order to prove thatDT™* N, is
s-cobordant taV'.

Now consider the standard handlebody decompositidn6f NV, consisting of &-handle,

k 1-handles and &-handle. By turning it upside down, we can constrixd™ N, by at-
taching a2-handle,k 3-handles and d-handle to a thickened7T™N,. Next we define a
homeomorphism : ST*N, — 0W sending a circle fiber to a circle fiber. Note that the
attaching curve of the (upside dowrhandle is a circle fiber i@/ which is nullhomo-
topic in . Thereforep extends over the-handle of DT N,. Moreover,p extends over
the handles of index greater thansincelV is aspherical. Furthermore, the map induced
by p takes the normal subgroup of (S7*N,) generated by the circle fiber to the normal
subgroup ofr, (0W) generated by the circle fiber, and hence descends to an ipbisior
between the quotients, (D7T*N,) andm(W). It follows thatp : DT*N, — W is a
homotopy equivalence by Whitehead’s Theroem.

To finish the proof, we simply observe that amynimal weak symplectic filling of the
planar contacB-manifold (ST* Ny, £..,) IS deformation equivalent to a Stein filling by
TheoreniZb. O
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