ON THE HEEGAARD GENUS OF CONTACT 3-MANIFOLDS

BURAK OZBAGCI

ABSTRACT. It is well-known that Heegaard genus is additive under connected sum of 3-manifolds. We show that Heegaard genus of contact 3-manifolds is not necessarily additive under *contact* connected sum. We also prove some basic properties of the contact genus (a.k.a. open book genus [8]) of 3-manifolds, and compute this invariant for some 3-manifolds.

1. Introduction

We assume that all 3-manifolds are closed, connected and oriented and all contact structures are co-oriented and positive throughout this paper. Let (B,π) denote an open book on a 3-manifold Y, where B is the binding, and π is the fibration of $Y\setminus B$ over S^1 . It follows that $(\pi^{-1}([0,1/2])\cup B)$ and $(\pi^{-1}([1/2,1])\cup B)$ are handlebodies which induce a Heegaard splitting of Y. Therefore an open book can be viewed as a special Heegaard splitting. Note that a stabilization of an open book at hand corresponds to a stabilization of the induced Heegaard splitting.

We define the Heegaard genus $\operatorname{Hg}(Y,\xi)$ of a contact 3-manifold (Y,ξ) as the minimal genus of a Heegaard surface in any Heegaard splitting of Y induced from an open book supporting ξ . Equivalently, $\operatorname{Hg}(Y,\xi)=1+\operatorname{sn}(\xi)=\min\{1-\chi(\Sigma)\mid \Sigma \text{ is a page of an open book supporting }\xi\}$, where $\operatorname{sn}(\xi)$ denotes the support norm of ξ (cf. [4]) and $\chi(\Sigma)$ denotes the Euler characteristic of Σ . This is certainly an adaptation of the usual definition of Heegaard genus to contact 3-manifolds. It is well-known that Heegaard genus is additive under connected sum of 3-manifolds. Here we show that Heegaard genus is sub-additive but not necessarily additive under connected sum of *contact* 3-manifolds.

Moreover we define the contact genus $\operatorname{cg}(Y)$ of a 3-manifold Y as the minimal Heegaard genus over all contact structures, i.e., $\operatorname{cg}(Y) = \min\{\operatorname{Hg}(Y,\xi) \mid \xi \text{ is a contact structure on } Y\}$ which, by Giroux's correspondence [5], is the minimal genus of a Heegaard surface in any Heegaard splitting of Y induced from an open book. In other words, the contact genus of a 3-manifold is a topological invariant obtained by taking the minimum of the sum 2g+r-1 over all open books, where g and r denote the genus of the page and the number of binding components of the open book, respectively. We show that contact genus is sub-additive (and conjecture that it is additive) under connected sum of 3-manifolds.

We would like to point out that the contact invariant was first studied by Rubinstein who named it the open book genus of Y (cf. [8]). We prefer to call it the contact genus to emphasize its connection with contact topology. It is clear by definition that for any contact structure ξ on Y we have

$$hg(Y) < cg(Y) < Hg(Y, \xi),$$

where hg(Y) denotes the usual Heegaard genus of Y. In [8], it was shown that "most" 3-manifolds of Heegaard genus 2 have contact genus > 2, which implies the existence of 3-manifolds where the first inequality above is strict. In particular, it follows that not every Heegaard splitting of a 3-manifold comes from an open book.

Here we show that "most" 3-manifolds of Heegaard genus 1 have contact genus > 1. Namely we show that a lens space which is not diffeomorphic to an oriented circle bundle over S^2 have contact genus ≥ 2 . On the other hand, the contact genus of any oriented circle bundle over S^2 is equal to its Heegaard genus. We also show that there are many small Seifert fibered 3-manifolds (which are not lens spaces) which have this property. Examples of such 3-manifolds were constructed in [8], but our examples are much simpler. We refer the reader to [3] and [7] for more on open books and contact structures.

2. HEEGAARD GENUS AND CONTACT CONNECTED SUM

Let (Y_1, ξ_1) and (Y_2, ξ_2) denote arbitrary contact 3-manifolds. By removing a Darboux ball from each of these contact 3-manifolds and gluing them along their convex boundaries by an orientation reversing map carrying respective characteristic foliations onto each other we get a well defined contact structure $\xi_1\#\xi_2$ on the connected sum $Y_1\#Y_2$. The contact 3-manifold $(Y_1\#Y_2,\xi_1\#\xi_2)$ is called the contact connected sum of (Y_1,ξ_1) and (Y_2,ξ_2) . It is well-known that Heegaard genus is additive under connected sum of smooth 3-manifolds, which follows from Haken's Lemma. Here we show that

Theorem 1. The Heegaard genus is sub-additive but not necessarily additive under connected sum of contact 3-manifolds.

Proof. Let \mathcal{OB}_i denote the open book realizing $\operatorname{Hg}(Y_i, \xi_i)$, for i = 1, 2. Then the contact structure $\xi_1 \# \xi_2$ on $Y_1 \# Y_2$ is supported by the open book \mathcal{OB} obtained by plumbing the pages of the open books \mathcal{OB}_1 and \mathcal{OB}_2 by Torisu [9]. Denote a page of the open book \mathcal{OB}_i by Σ_i . It follows that

$$-\chi(\Sigma) = -\chi(\Sigma_1) - \chi(\Sigma_2) + 1,$$

where Σ denotes the page of the open book \mathcal{OB} . Thus we have

$$\operatorname{Hg}(Y_1 \# Y_2, \xi_1 \# \xi_2) \leq \operatorname{Hg}(Y_1, \xi_1) + \operatorname{Hg}(Y_2, \xi_2),$$

which implies that Hg is sub-additive under contact connected sum.

Next we show that Hg is not necessarily additive under contact connected sum. Let ξ_d denote the overtwisted contact structure in S^3 whose d_3 invariant (cf. [6]) is equal to the half integer d. The following result was obtained in [1]: If (Y, ξ) is a contact structure with $c_1(\xi)$ torsion, then

$$d_3(Y, \xi \# \xi_d) = d_3(Y, \xi) + d_3(S^3, \xi_d) + 1/2.$$

Now suppose that Y is an integral homology sphere. It follows that $c_1(\xi) = 0$ for every contact structure ξ on Y, and Y carries a unique spin^c structure. Thus for an arbitrary contact structure ξ on Y we have

$$d_3(Y,\xi\#\xi_{-\frac{1}{2}}) = d_3(Y,\xi) + d_3(S^3,\xi_{-\frac{1}{2}}) + \frac{1}{2} = d_3(Y,\xi),$$

which implies that the connected sum $\xi \# \xi_{-\frac{1}{2}}$ is homotopic to ξ as oriented plane fields (cf. [6]). In fact, $\xi \# \xi_{-\frac{1}{2}}$ is isotopic to ξ by the classification of overtwisted contact structures due to Eliashberg [2]. As a consequence we have

$$\operatorname{Hg}(Y, \xi \# \xi_{-\frac{1}{2}}) = \operatorname{Hg}(Y, \xi).$$

On the other hand, in ([4], Lemma 5.5), it was proved that $\mathrm{Hg}(S^3,\xi_{-\frac{1}{2}})=2$. Note that an open book realizing $\mathrm{Hg}(S^3,\xi_{-\frac{1}{2}})$ can be described by taking a pair of pants as a page and $t_1t_2^{-2}t_3^{-3}$ as the monodromy, where t_i denotes a right-handed Dehn twist along a boundary component. Consequently we have

$$\operatorname{Hg}(Y \# S^3, \xi \# \xi_{-\frac{1}{2}}) < \operatorname{Hg}(Y, \xi) + \operatorname{Hg}(S^3, \xi_{-\frac{1}{2}}).$$

3. Contact genus of three dimensional manifolds

Here we provide some basic properties of the contact genus of 3-manifolds, and compute this invariant for some 3-manifolds.

Proposition 2. Let Y denote a 3-manifold. Then we have

- (a) $cg(Y) \ge 0$ (= 0 if and only if $Y \cong S^3$),
- (b) cg(Y) = 1 if and only if Y is an oriented circle bundle over S^2 (which is not diffeomorphic to S^3).

Proof. For a 3-manifold Y, $\operatorname{cg}(Y)$ is obtained by taking the minimum of the sum 2g+r-1 over all open books, where g and r denote the genus of the page and the number of binding components of an open book, respectively. Hence we have $0 \le \operatorname{cg}(Y)$ for an arbitrary 3-manifold Y, since $g \ge 0$ and $r \ge 1$. It is clear that the absolute minimum of the expression 2g+r-1 is realized when g=0 and r=1 and the open book with disk pages and trivial monodromy supports the unique tight contact structure on S^3 , which proves (a).

To prove (b), we note that $\operatorname{cg}(Y)=1$ is realized if and only if g=0 and r=2. Any self-diffeomorphism of an annulus is given by t_c^m , for some $m\in\mathbb{Z}$, where c is the core of the annulus, and t_c denotes a right-handed Dehn twist along c. If $m\geq 0$, this open book supports the unique tight contact structure on the lens space L(m,-1) which is an oriented circle bundle over S^2 with Euler number m. Otherwise (i.e., when m<0) the induced contact structure is the overtwisted contact structure on L(-m,1) which is an oriented circle bundle over S^2 with Euler number m. Combining, we showed that $\operatorname{cg}(Y)=1$ if and only if Y is an oriented circle bundle over S^2 , which is not diffeomorphic to S^3 .

Note that oriented circle bundles over S^2 are very special lens spaces and therefore we immediately conclude from Proposition 2 that

Corollary 3. *Most* 3-manifolds of Heegaard genus 1 have contact genus > 1.

For example, cg(L(5,3)) = 2, since L(5,3) is not a circle bundle over S^2 and it carries a (tight) contact structure which is supported by a planar open book with three binding components.

Lemma 4. We have $cg(Y_{p,q,r}) \le 2$, where $Y_{p,q,r}$ denotes the 3-manifold depicted in Figure 1, with $p, q, r \in \mathbb{Z}$. Moreover if |p| > 1, |q| > 1 and |r| > 1 then $cg(Y_{p,q,r}) = 2$.

Proof. It follows from [4] that $Y_{p,q,r}$ has a planar open book with at most three binding components, which indeed proves that $\operatorname{cg}(Y_{p,q,r}) \leq 2$. Moreover, under the assumption that |p| > 1, |q| > 1, and |r| > 1, the 3-manifold $Y_{p,q,r}$ is not diffeomorphic to any lens space and hence $\operatorname{cg}(Y_{p,q,r}) = 2$ by Proposition 2.

FIGURE 1. Integral surgery diagram for the small Seifert fibered 3-manifold $Y_{p,q,r}$

When we drop the assumption on p, q and r in Lemma 4, we observe that $Y_{p,q,r}$ is diffeomorphic to either S^3 , $S^1 \times S^2$, a lens space, or certain connected sums of these for some values of the integers p, q and r.

Remark 5. Note that Lemma 4 exhibits examples of 3-manifolds $Y = Y_{p,q,r}$ for which hg(Y) = cg(Y) = 2, although most 3-manifolds of Heegaard genus 2 have contact genus > 2 as was shown by Rubinstein [8].

Lemma 6. We have $cg(\#_k S^1 \times S^2) = k$, for $k \ge 1$.

Proof. Since $hg(\#_kS^1\times S^2)=k$, we know that $cg(\#_kS^1\times S^2)\geq k$. Hence to show that $cg(\#_kS^1\times S^2)=k$, we just need to realize this lower bound by a Heegaard splitting of $\#_kS^1\times S^2$ induced from an open book. We use the fact that the unique tight contact structure on $\#_kS^1\times S^2$ is supported by an planar open book with k+1 binding components, whose monodromy is the identity map.

The proof of the following result is similar to the proof of Theorem 1.

Proposition 7. Let Y_i denote a 3-manifold, for i = 1, 2. Then we have

$$cg(Y_1 \# Y_2) \le cg(Y_1) + cg(Y_2).$$

Conjecture 8. Contact genus is additive under connected sum of 3-manifolds.

Note that if
$$hg(Y_i) = cg(Y_i)$$
 for $i = 1, 2$, then $cg(Y_1 \# Y_2) = cg(Y_1) + cg(Y_2)$.

Acknowledgement: The author would like to thank John B. Etnyre and Ko Honda for helpful conversations and the Mathematical Sciences Research Institute for its hospitality during the *Symplectic and Contact Geometry and Topology* program 2009/10. The author was partially supported by the 107T053 research grant of the Scientific and Technological Research Council of Turkey and the Marie Curie International Outgoing Fellowship 236639.

REFERENCES

- [1] F. Ding, H. Geiges, and A. Stipsicz, *Surgery diagrams for contact 3-manifolds*, Turkish J. Math. 28 (2004), 41–74.
- [2] Y. Eliashberg, Contact 3-manifolds twenty years since J. Martinet's work, Ann. Inst. Fourier 42 (1992), 165–192.
- [3] J. B. Etnyre, *Lectures on open book decompositions and contact structures*, Lecture notes from the Clay Mathematics Institute Summer School on Floer Homology, Gauge Theory, and Low Dimensional Topology at the Alfréd Rényi Institute.
- [4] J. B. Etnyre and B. Ozbagci, *Invariants of contact structures from open books*, Trans. Amer. Math. Soc., 360(6):3133–3151, 2008.
- [5] E. Giroux, Géometrie de contact: de la dimension trois vers les dimensions supérieures, Proceedings of the International Congress of Mathematicians (Beijing 2002), Vol. II, 405–414.
- [6] R. Gompf, Handlebody construction of Stein surfaces, Ann. of Math. (2), 148 (1998) no. 2, 619–693.

- [7] B. Ozbagci and A. I. Stipsicz, *Surgery on contact 3–manifolds and Stein surfaces*, Bolyai Soc. Math. Stud., Vol. 13, Springer, 2004.
- [8] H. Rubinstein, *Comparing open book and Heegaard decompositions of 3-manifolds*, Turkish J. Math. 27 2003, 189–196.
- [9] I. Torisu, *Convex contact structures and fibered links in 3-manifolds*, Internat. Math. Res. Notices 2000, no. 9, 441–454.

Department of Mathematics, Koç University, Istanbul, Turkey *E-mail address*: bozbagci@ku.edu.tr