
BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 43, Number 3, July 2006, Pages 429–434
S 0273-0979(06)01102-5
Article electronically published on April 19, 2006

Surgery on contact 3-manifolds and Stein surfaces, by Burak Ozbagci and András I.
Stipsicz, Springer-Verlag, Berlin; János Bolyai Mathematical Society, Budapest,
2004, 281 pp., US$89.95, ISBN 3-540-22944-2; ISBN 963-9453-03-X

The venerable subject of contact geometry has gone through a dramatic trans-
formation over the last 10 to 15 years that has made it into a fundamental tool
in low-dimensional topology as well as revealing itself as a field with a great deal
of beauty and subtlety. The origins of contact geometry date back more than two
centuries, to the work of Huygens, Hamilton and Jacobi on geometric optics, and it
has been studied by many great mathematicians, such as Lie, Cartan and Darboux.
Despite its ancient origins and its reoccurrence in physical and geometric context
over the years it is only recently that its strongly topological flavor has surfaced and
it has moved into the foreground of mathematics. The book under review provides
an introduction to several of these recent advances.

Recall that a contact structure on an oriented 3-manifold M is a two-dimensional
sub-bundle ξ of the tangent bundle TM that can be defined (at least locally) as
the kernel of a 1-form α; that is, ξ = kerα satisfying α ∧ dα is a positive volume
form on M. As a first example of a contact structure consider R

3 with cylindrical
coordinates; then ξstd = ker(dz + r2 dθ) is easily seen to be a contact structure. See
Figure 1. A theorem of Darboux says that any contact structure on any 3-manifold

Figure 1. The standard contact structure ξstd, left, and an over-
twisted contact structure ξot, right. (Pictures courtesy of Stephan
Schönenberger.)

is locally equivalent to this one. That is, every point in a contact manifold has a
neighborhood diffeomorphic to some open set in R

3 by a diffeomorphism that takes
the contact structure to ξstd. Thus we could alternately define a contact structure
on M to be a two dimensional sub-bundle ξ of TM that is locally equivalent to
ξstd. Another interesting contact structure we will discuss below is

ξot = ker(cos r dz + r sin r dθ).
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When studying contact structures ξ on M , it will be useful to consider knots in
them. A knot K in M is called Legendrian if K is always tangent to ξ.

Modern contact geometry was born in Bennequin’s wonderful paper “Entrelace-
ments et équations de Pfaff” [1]. In this paper Bennequin established the existence
of two distinct contact structures on R3. The basic idea is quite simple. Note that
the disk D of radius π

2 in the xy-plane is tangent to the contact planes of ξot along
the boundary of D. (Said another way, the framing of ∂D given by ξot and by D
agree.) Bennequin showed that no such disk exists in ξstd. Not only did this result
demonstrate that R3 can support more than one contact structure, it ushered in
a low-dimensional topological approach to studying problems in contact geometry.
To elaborate on this point, note that ∂D is a Legendrian knot in R

3 and that as the
knot is traversed the contact planes do not “twist” relative to the disk. Given any
knot K in R

3 it bounds an orientable surface Σ embedded in R
3. If K is Legendrian

one can ask how many times the contact planes twist relative to the surface Σ. This
number is called the Thurston-Bennequin invariant of the knot K and is denoted
tb(K). From the discussion above it is clear that there is a Legendrian knot K in R

3

with contact structure ξot that bounds a disk and has tb(K) = 0. Bennequin showed
that if K is a Legendrian knot bounding a disk in R

3 with contact structure ξstd,
then tb(K) ≤ −1. Bennequin proved this result by using a creative combination of
braid theory, normal forms for Seifert surfaces and the study of singular foliations
on surfaces.

After Bennequin’s work, Eliashberg saw that there was a fundamental difference
between contact structures containing embedded disks as above and ones that do
not [2]. The former type of contact structures he called overtwisted and the latter
tight. The terminology overtwisted is clear: the planes defining a contact structure
must “twist” so that they are not tangent to a surface in an open neighborhood
(this follows from the definition of contact structure and the Frobenious integrability
criterion); but if they twist too much, the contact structure is called overtwisted.
Indicating that the tight vs. overtwisted dichotomy was a useful one, Eliashberg
showed that overtwisted contact structures are determined by algebraic topological
information. Specifically, he showed that in every homotopy class of plane field there
was an overtwisted contact structure (actually Lutz showed this, but he did not use
the terminology overtwisted). Moreover, Eliashberg showed that two overtwisted
contact structures were the same if and only if their underlying plane fields were
homotopic. Thus studying the classification of overtwisted contact structures is
reduced to studying homotopy types of plane fields, which is a purely algebro-
topological question. (Subsequently, the slogan “overtwisted contact structures are
topological, while tight contact structures are geometric” has been borne out in
other settings.) Eliashberg showed, on the other hand, that there were strong
restrictions on the existence of tight contact structures. For example, a contact
structure ξ on a 3-manifold M is, among other things, an oriented two-dimensional
vector bundle and thus has an Euler class e(ξ) ∈ H2(M ; Z). If the contact structure
is tight, then Eliashberg showed that

|e(ξ)[Σ]| ≤ −χ(Σ),

where Σ is an oriented surface, is not equal to S2, is embedded in M, [Σ] is its
homology class, and χ is the Euler characteristic. This inequality implies that
there are only a finite number of elements in H2(M ; Z) that can be realized as the
Euler class of a tight contact structure. This is in contrast to the fact that any even
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class can be realized as the Euler class of an overtwisted contact structure. This
inequality also points out that tight contact structures can see subtle topological
properties of the underlying manifold. In particular, the inequality gives a non-
trivial lower bound on the genus of surfaces representing various homology classes
in M.

While it is fairly easy to construct overtwisted contact structures, it is a much
more difficult matter to construct tight contact structures. Bennequin proved that
the standard contact structure on R

3 is tight (and from this it is not hard to see that
the standard contact structure on S3 is tight). Apart from these results, examples
were hard to come by until Eliashberg and Gromov proved that contact structures
filled by a symplectic manifold are tight [4]. To be more precise, if X is a 4-manifold
and ω is a symplectic form on it (recall this means ω is a closed 2-form and ω∧ω is
a volume form on X), then one says (X, ω) symplectically fills the contact manifold
(M, ξ) if ω(v, w) > 0 for any positively oriented basis v, w of ξ at any point in M.
This result gave a second proof that the standard contact structures on S3 and
R

3 are tight. It also allowed for the construction of other tight contact structures.
Many of these contact structures were constructed via Stein fillings.

A Stein manifold X is a complex manifold (we denote its complex structure
by an automorphism J of the tangent bundle such that J2 = −id) that admits a
proper biholomorphic embedding in C

4. Such a manifold will not be compact and
will always have a proper Morse function f : X → [0,∞) such that non-critical level-
sets f−1(t) are 3-manifolds whose complex tangencies form a contact structure that
is symplectically filled by f−1([0, t]) with symplectic form −d(J ◦ df). If f has only
finitely many critical values and t is larger than them all, then one frequently thinks
of f−1([0, t]) as a “Stein filling” of its boundary or calls it a “Stein manifold with
boundary”. This is an abuse of terminology but has become standard in contact
geometry. The question now becomes how to construct Stein manifolds. This
question was answered by Eliashberg (and further elaborated on by Gompf). First,
a 4-manifold built out of 0- and 1-handles has a Stein structure. Thus its boundary
has a contact structure. Moreover, given any Stein manifold with boundary Y and
any Legendrian simple closed curve γ in its boundary, there is a Stein structure
on Y union a 2-handle attached to γ if it is attached with framing one less than
the framing the contact planes give to γ. If Y ′ is the Stein manifold obtained by
attaching a 2-handle to Y as above, then one says that the contact manifold ∂Y ′

is obtained by Legendrian surgery from ∂Y.
A few of the early triumphs of contact topology were Eliashberg’s proof that

there is a unique tight contact structure on S3 and Gromov’s proof that the unit
ball in C

2 is the unique Stein filling of this contact structure. These two beautiful
results (and their proofs) can be used to give a “simple” proof of a deep theorem
of Cerf: Any diffeomorphism of S3 extends over the 4-ball. This result is one of
the indications that contact/symplectic geometry could be used to probe subtle
topological properties of 3- and 4-manifolds.

By the mid 1990’s many tools in contact geometry had been developed by many
people, but predominantly by Eliashberg and Giroux. These tools lead to the classi-
fication of contact structures on the 3-torus, by Kanda and, independently, Giroux,
and some partial classification results on lens spaces, by the reviewer. Shortly there-
after Honda and, independently, Giroux were able to classify contact structures on
all lens spaces, torus bundles over the circle and on circle bundles over surfaces.
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Since that time there have been countless advances by many mathematicians. Two
highlights are the surprising fact that there are 3-manifolds that do not admit tight
contact structures (by Honda and the reviewer with further examples by Lisca and
Stipsicz) and there are tight contact structures that do not admit any symplectic
fillings (by Honda and the reviewer with many further examples given by Lisca and
Stipsicz).

Many of the recent advances in contact geometry have been made possible by
Giroux’s correspondence between open book decompositions and contact structures
[3]. An open book decomposition of a 3-manifold is a link L in the manifold
such that the complement of the link fibers over the circle in such a way that the
closure of the fibers have boundary L. It was observed in the 1970’s by Thurston
and Winkelnkemper that one could “perturb” an open book decomposition of a 3-
manifold into a contact structure. Amazingly, all contact structures come from this
construction. This was proven by Giroux in 2000. Moreover, Giroux gave a simple
equivalence relation on open book decompositions such that the equivalence classes
were in one-to-one correspondence with contact structures. This correspondence
has been of immense importance over the last few years. The results that have
followed from it are too numerous to discuss in this article, so we restrict ourselves
to just two applications of Giroux’s correspondence.

The first application involves Heegaard Floer homology. This is a powerful in-
variant of 3-manifolds defined by Ozsváth and Szabó in 2000 [5] that assigns to a
closed oriented 3-manifold M (and spinc structure on M) a graded group HF (M).
(Actually, there are many flavors of Heegaard Floer homology, but this is a point
that is safe to suppress in this article.) These graded groups are conjectured to
be related to Seiberg-Witten Floer homology, but despite the many parallel results
this has not been established yet. There is also a version of this theory that gives
an invariant of a knot K in M. Ozsváth and Szabó have used this knot invari-
ant and Giroux’s correspondence to define an element c(ξ) in HF (−M) for any
contact structure ξ. (We denote M with its orientation reversed by −M.) This
invariant vanishes for overtwisted contact structures, but is non-zero for fillable
contact structures. Many results about contact structures have been proven using
this new invariant. For example, just a few months ago Ghiggini settled a much-
studied question by showing that a symplectically fillable contact structure need
not be Stein fillable by using properties of the invariant c(ξ).

The next application of Giroux’s correspondence is to symplectic fillings. Build-
ing on the work of many people, Eliashberg and, independently, the reviewer showed
that any symplectic filling of a contact manifold can be embedded in a closed sym-
plectic manifold. There has been a great deal of other work concerning symplectic
cobordisms, but this result was a key ingredient in several applications to topol-
ogy. Using this result and the work of Feehan and Leness on the relation between
Seiberg-Witten theory and Donaldson theory, Kronheimer and Mrowka were able
to prove that all non-trivial knots satisfy Property P. A knot has Property P if non-
trivial surgery on it never yields a homotopy sphere. It had long been conjectured
that non-trivial knots always have Property P, but it took an elegant confluence of
many trends in modern topology to establish this much-studied conjecture. A sec-
ond application of the above embedding result is the characterization of the unknot
in S3 by Ozsváth and Szabó. They proved that if p-surgery on a knot in S3 yields
−L(p, 1) (this is the result of p-surgery on the unknot), then the knot must be
the unknot. This conjecture of Gordon was originally established by Kronheimer,
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Mrowka, Ozsváth and Szabó without the use of the above symplectic embedding
result, but in Ozsváth and Szabó’s proof, many interesting and useful properties of
Heegaard Floer homology are revealed (some of these properties need Eliashberg’s
version of the embedding theorem).

The theory of Lefschetz fibrations is a useful 4-dimensional tool related to open
book decompositions. A Lefschetz fibration of a 4-manifold is a fibration of the
4-manifold over a surface with certain types of singularities. If the 4-manifold
(and the fibers of the fibration) has boundary and the Lefschetz fibration is over a
disk, then one obtains an open book decomposition of the boundary by restricting
the Lefschetz fibration to the boundary. This observation has been very useful
in understanding fillings of contact manifolds. In particular, Loi and Piergallini
and, independently, Akbulut and Ozbagci have proven various results about open
book decompositions associated to Stein fillable contact structures. In addition the
structure of Lefschetz fibrations was essential to the applications of Heegaard Floer
homology mentioned above.

The last trend in contact geometry we wish to discuss is contact surgery. Above it
was mentioned that when constructing Stein manifolds, one can perform Legendrian
surgery on a Legendrian knot. Topologically this amounts to performing a surgery
on a Legendrian knot with framing one less than the contact framing. Though not
related to the construction of Stein manifolds, one can also perform a surgery on a
Legendrian knot with framing one more that the contact framing and get a natural
contact structure. This is called +1-contact surgery (in this context, Legendrian
surgery is called −1-contact surgery). There are other types of contact surgery, but
they all amount to ±1-contact surgery, so this is all we mention here. Though these
notions have floated about the field for some time, Ding and Geiges were the first
to systematically study contact surgery and show that all contact structures can be
obtained from the standard one on S3 by contact surgeries. While contact surgery
is interesting in and of itself, it took a central role in contact geometry when it
was shown that the Heegaard Floer contact invariant behaved nicely with respect
to contact surgery. Lisca and Stipsicz, and others, have used this to great effect,
significantly illuminating the world of tight contact structures.

While there are other exciting trends in contact geometry, such as the use of
convex surfaces, holomorphic curves and, in particular, Symplectic Field Theory,
the book under review is a user’s guide to the ideas discussed in the previous few
paragraphs. The book assumes very little background. Anyone with knowledge
of basic topology, manifold theory and algebraic topology should have no trou-
ble reading it. The authors have chosen several recent developments in contact
geometry and have built the book with an idea toward taking someone with the
above-mentioned modest background to these cutting-edge developments. Given
the size of the book (281 pages), this means not fully developing much of the the-
ory discussed in the book, but there is ample discussion for the reader to follow the
train of arguments and appreciate the main results. Some of the main results at
which the book aims are a topological characterization of Stein domains and Stein
neighborhoods of surfaces in complex projective space, an application of contact
geometry to the 4-ball genus of knots in S3, the existence of tight but not sym-
plectically fillable contact structures, and the topology of Stein fillings of a contact
3-manifold. After an introduction that outlines some of the aims of the book,
there are three chapters that cover the basic theory of surgery on knots, symplectic
4-manifolds and contact 3-manifolds, respectively. The authors then discuss convex
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surfaces (a fundamental tool in contact geometry), spinc structures on 3- and 4-
manifolds, symplectic surgery and Stein manifolds. At this point the reader has the
background to appreciate the breakthroughs in contact geometry starting around
2000. Specifically, the next two chapters discuss Giroux’s correspondence between
open book decompositions and contact structures, and the related theory of Lef-
schetz fibrations of 4-manifolds. The last two chapters cover contact surgery and
fillings of contact manifolds. Throughout the book the authors use Seiberg-Witten
theory and Heegaard Floer homology, so to make the book self-contained there are
two appendices covering these topics. There is also an appendix on the mapping
class group of surfaces, which plays a role in studying open book decompositions.

This book is an enjoyable introduction to many of the ideas that are driving
contact geometry today. Though there are a few survey articles and a chapter or
two in books that cover contact geometry, there are few places where someone can
find an introduction to contact geometry, much less one that takes the reader to the
frontiers of research. This book is highly recommended to any graduate student or
researcher who would like to understand many of the exciting developments in the
contact geometry of 3-manifolds and their application to low-dimensional topology.
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[3] E. Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures,
Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 405–414,
Higher Ed. Press, Beijing, 2002. MR1957051 (2004c:53144)

[4] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985),
307–347. MR0809718 (87j:53053)
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