SYMPLECTIC FILLINGS OF LENS SPACES AS LEFSCHETZ FIBRATIONS
MOHAN BHUPAL AND BURAK OZBAGCI

ABSTRACT. We construct a positive allowable Lefschetz fibration ober disk on any
minimal (weak) symplectic filling of the canonical contattgture on a lens space. Using
this construction we prove that any minimal symplecticrfgliof the canonical contact
structure on a lens space is obtained by a sequence of fidilonalowns from the minimal
resolution of the corresponding complex two-dimensiogalic quotient singularity.

1. INTRODUCTION

The link of an isolated complex surface singularity caraesanonical—also known as
Milnor fillable—contact structure which is unique up to isormphism [5]. A Milnor fillable
contact structure is Stein fillable since a regular neighbod of the exceptional divisor in
a minimal resolution of the surface singularity providesodomorphic filling which can
be deformed to be Stein without changing the contact streatn the boundary [4]. In
particular, a singularity link with its canonical contatitusture always admits a symplectic
filling given by the minimal resolution of the singularity.

The canonical contact structure on a lens space (the odidimie of a complex two-
dimensional cyclic quotient singularity) is well undemstbas the quotient of the standard
tight contact structure o¥3. The finitely many diffeomorphism types of the minimal
symplectic fillings of the canonical contact structure oreasl space were classified by
Lisca [12] (see also work of the first author and K. Ono [2]).

In this paper, we give an algorithm to present each minimai@gctic filling of the
canonical contact structure on a lens space as an explimitsggero PALF (positive al-
lowable Lefschetz fibration) over the disk. The existencseuwth a genus-zero PALF also
follows from [20, Theorem 1] although we do not rely on thatui¢ in this paper. Using
our construction we prove the following.

Theorem[4. Any minimal symplectic filling of the canonical contact sture on a lens
space is obtained by a sequence of rational blowdowns dinagrplumbing graphs start-
ing from the minimal resolution of the corresponding cydiimtient singularity.

We would like to emphasize that while the various fillings ilated to the plumbing by
rational blowdown, the curves that are blown down need nagdparent in the canonical

plumbing graph. We also obtain the following corollariesTbeoreni 4.
1
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Corollary [0l The canonical contact structure on a lens space admits augnigini-
mal symplectic filling—represented by the Stein structimettve PALF we construct on
the minimal resolution—up to symplectic rational blowdoawrd symplectic deformation
equivalence.

Corollary LIl Any Milnor fiber of any smoothing of the complex two-dimemai@yclic
quotient singularity can be obtained, up to diffeomorphisyna sequence of rational blow-
downs along linear plumbing graphs from the Milnor fiber edffnorphic to the minimal
resolution of the singularity.

We refer the reader to [10] and [16] for background materiaLefschetz fibrations,
open books and contact structures. We denote a right-hdbeled twist along a curve
as~y again and we use functional notation while writing produgt®ehn twists.

2. SYMPLECTIC FILLINGS AS LEFSCHETZ FIBRATIONS

For integersl < ¢ < p, with (p,q) = 1, recall that the Hirzebruch-Jung continued
fraction is given by

Z—?:[al,ag,...,al]:al——l, a; >2foralll <i <.
q
a9 — 1

ap

The lens spacé.(p, q) is orientation preserving diffeomorphic to the link of theclic
guotient singularity whose minimal resolution is given b¥ireear plumbing graph with
vertices having weights-a;, —as, ..., —a;, wherep/q = [a4, . .., a)].

It is known that any tight contact structure éip, ¢), in particular the canonical con-
tact structure...,,, is supported by a planar open bookl|[18]. According to Wega],[if a
contact3-manifold (Y, ) is supported by a planar open bo643,, then any strong sym-
plectic filling of (Y, £) is symplectic deformation equivalent to a blow-up of a PALose
boundary isOB;. On the other hand, it is also known that every weak symméitiing
of a rational homology sphere can be modified into a strongpdgtic filling [14]. We
conclude that any minimal symplectic filling 6L(p, q), ..,,) admits a genus-zero PALF
over D2, In this section we give an algorithm to describe any minigyahplectic filling of
(L(p, q), £can) @S anexplicitgenus-zero PALF oveb?.

2.1. Lisca’s classification of the fillings. We first briefly review Lisca’s classification [12]
of symplectic fillings of( L(p, q), &can), UP to diffeomorphism. Let

T

p—q
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whereb;, > 2 for 1 < i < k. A k-tuple of nonnegative integefs., ..., n;) is called

admissible if each of the denominators in the continuedifvagn,, . . ., n,| is positive. It

is easy to see that an admissilbleuple of nonnegative integers is eith@) or consists
only of positive integers. Leg, C Z* denote the set of admissibletuples of nonnegative
integersn = (ny, ..., ng) such thafn,, ..., ny] = 0, and let

Zk(ﬁ):{(nl,,nk)EZk\Ognlgbzforzzl,,k}

Note that any:-tuple of positive integers itZ;, can be obtained frorfll, 1) by a sequence
of strict blowups.

Definition 1. A strict blowup of anr-tuple of integers at thgth term is a map), : Z" —
7! defined by
(N1, ..o, g, oo oyny) = (e, .,y + 1, 1L n 0 + 1m0, .00, n,)
foranyl < 7 <r —1and by
(ny,...,n.)— (ng,...,np_1,n, + 1, 1)

whenj = r. The left inverse of a strict blowup at theh term is called a strict blowdown
atthe(j + 1)st term.

Consider the chain of unknots inS? with framingsn,, ns, ..., ns, respectively. For
anyn = (nq,...,n) € 2, let N(n) denote the result of Dehn surgery on this framed link.
It is easy to see tha{ (n) is diffeomorphic taS! x S2. LetL = Ule L; denote the framed
linkin N'(n), shown in Figuré]l in the complement of the chairk efnknots, wherd.; has
b; — n; components.

ni no Nk—1 ng
\
(\( o o o g\
~——
~1-1 -1 —1-1-1 -1-1-1 -1-1 -1
by —nq by — no b1 —np_1 b — ny

FIGURE 1. Lisca’s description of the fillingl/, ;) (n)

The 4-manifold W, ,(n) with boundaryL(p, q) is obtained by attaching-handles to
S x D? along the framed linko(L) C S x S? for some diffeomorphisnp : N(n) —
St x S%. Note that this description is @lative handlebody decomposition 6%, ,(n)
and it is independent of the choice@fsince any self-diffeomorphism ¢! x S? extends
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to S x D3. According to Lisca, any symplectic filling ofi(p, q), £.an) iS Orientation-

preserving diffeomorphic to a blowup &F), ,(n) for somen € Z.(-2.).

Remark 2. In particular, forp # 4, (L(p, 1), &can) has a unique minimal symplectic filling
and, forp > 2, (L(p*,p — 1),&.,) has two distinct minimal symplectic fillings, up to
diffeomorphism.

2.2. Another description of the fillings. Here we give another description @f, ,(n)
which will lead to a construction of a genus-zero PALF on thisanifold with boundary.
We refer to Figuréll in the following discussion. First wedslithe unknot with framing
ni—1 over the unknot with framing, and denote the framing of the new unknot#@s,.
Next we slide the unknot with framing,_, over the unknot with framing;._, and proceed
inductively until we slide the unknot with framing, over the one with framing/, and let
n} denote its new framing. By setting, = n,, the new framings of the surgery curves are
given byn}, n}, ..., n;, all of which can be computed inductively by the standardiala
for a handle-slide:

g =n;+nj, — 2
for1 < i < k — 1. Notice that these handle-slides are performed in the cemght
of the link L in Figure[1 and the result of Dehn surgery on the new framdditralso
diffeomorphic toS* x S2.

Moreover, this new surgery link can be viewed as the closfieebwaid in.S3. We order
the strands of this braid using the sub-indices of their@ased framings. To visualize this
braid, imagine a trivial braid witt-strands, wrap théth strandn; — 1 times around the
first k — 1 strands and then wrap the strand indexed by1 around the first — 2 strands
nj_, — 1 times and proceed inductively. See Figlte 2 for an illugtrabf “wrapping
around”. To be more precise this braid is given by

j=k

~1 —1_—1 —1 \n/—1
||(Uj71"'01 01 "'ijl) !
Jj=2

whereoy, ..., 0,1 are the standard generators in the braid group wgtrands.

Each component; of L can now be viewed as an unknot linking the firstrands of this
braid. As aresult we get another relative handlebody detseni of the4-manifoldiV,, ,(n),
where the chain of unknots with framings, . . ., n, in Lisca’s description is replaced by
unknots with framings)/, . .., n}, braided as described above and the linglays the same
role in both descriptions.

2.3. Open book decompositions of* x S2. Let&,, denote the standard contact structure
in S x S2. Our aim in this section is to construct an open book decoitippsompatible
with (ST x S?% &,;) corresponding to a strict blowup sequence fr(im to an arbitrary
positivek-tuplen = (nq,...,n;) € Z. Itis well-known that the open book whose page is
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R/‘J jth strand

first j — 1 strands

FIGURE 2. Thejth strand wraps around the first- 1 strands once

an annulus and whose monodromy is the identity is compatitthe(S* x 5%, £,;). We say
that this open book corresponds(th € Z;. If £ > 1, we stabilize this open book once
so that the new page is a disk with two holes and the new monodie a right-handed
Dehn twist around one of the holes. This is the open book spamding to(1,1) € 2.
The holes in the disk are ordered linearly frdaft to right and the Dehn twist is around
the second hole as shown in Figlte 3(a).

FIGURE 3. Positive stabilizations

Depending on a blowup sequence fréim1) to (n4, ..., nx), we inductively stabilize
k — 2 times, the open book corresponding(io1) as follows: For the initial step corre-
sponding to the blowupl, 1) — (2, 1,2) we just split the second hole in Figurk 3(a) into
two holes, so that both holes lie in the interior of the Dehistwl hen we relabel the holes
asl, 2, 3 linearly from left to right and add a stabilizing right-ha@iDehn twist which en-
circles the holes labelled dsand3 as depicted in Figuld 3(b). This is certainly a positive
stabilization, as one can attach-#andle in the interior of the second hole in Figlie 3(a),
and let the stabilizing curve go over tHishandle.

Corresponding to the alternative blow(ip 1) — (1,2, 1), we just insert a third hole to
theright of the second hole so that this holenist included—as opposed to the previous
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case—in the Dehn twist which already exists in the initiatlogpook. Then we add a
stabilizing right-handed Dehn twist around this new holslaswvn in Figuré13(c).

Suppose that the page of the open book, corresponding tesh# ofr — 2 consecutive
blowups starting fron{1, 1), is a diskD, with r holes (for3 < r < k — 1) so that the
monodromy is the product of— 1 right-handed Dehn twists

xl .. .x’f‘fl'

Assume that the holes are ordered linearly fleftto right on the disk. If the next blowup
occurs at thgth term, forl < j < r — 1, then we insert a new hole between itle and
(7 + 1)st holes (imagine splitting th@ + 1)st hole into two) and relabel the holes linearly
from left to right asl,2,...,r + 1. Let D,,; denote the new disk with + 1 holes and
let z; denote the right-handed Dehn twist @én,; induced fromz;. This means that if
x; encircles thej + 1)st hole inD,.,, thenz; encircles the same holes asplus the new
hole inserted to obtai®, |, otherwisexr; andz; encircle the same holes. To complete
the stabilization, we add a right-handed Dehn twist alongraec3; encircling the holes
labelled asl, 2, ..., j,j + 2, skipping thenew holenow labelled ag + 1in D,,;. As a
result the monodromy of the new open book is given by the prbdu

i Ty,

If, on the other hand, the next blowup occurs atttieterm, we insert afr+1)st hole to
the right and add a stabilizing right-handed Dehn twist; around this new hole labelled
by r + 1. In this case, it is clear how to lift the Dehn twistin D, to x; in D,.; and the
resulting monodromy is

Ty Ty Qg

The page of the resulting open book decompositiofi'ok S? corresponding to a strict
blowup sequence frorfi, 1) to the positivek-tuplen = (n4, ..., nx) is a diskD; with k
holes and the monodromy is given as the produét-ef right-handed Dehn twists (ordered
by the induction) along the inserted stabilizing curvessateblowup. Note that if we think
of the holes inD;, as being arranged counterclockwise in an annular neighbodrof the
boundary, then each of the Dehn twists we considercsravexDehn twist.

The open book decomposition we have just constructed leagiettanother surgery
description ofS* x S2. Take the closure of a trivial braid withstrands each of which has
framing and insert—1)-framed surgery curves (ordered from top to bottom) cowadmg
to the stabilizing curves linking this braid according t@ thlgorithm given above. By
blowing down all the(—1)-surgery curves we get faamed braidwith & strands whose
closure represents! x S2.

2.4. Equivalence of the two framed braids. We claim that the framed braid with
strands obtained by blowing down all tfie 1)-surgery curves in Sectidn 2.3, is exactly
the same as the framed braid obtained in Se¢fion 2.2 by halidés on the given chain
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of £ unknots. Our aim in this section is to prove this claim by iciitan. Let us use the
notation(ny, ...,ng) = (n},...n,) to denote the new framings of the surgery curves after
performing the handle-slides in Section]2.2.

First of all, we claim that the framings of each strand witk ame index are equal
in both braids. Suppose that our claim holds before we apghoavup to anr-tuple
(n1,...,n,.). One can verify that the effect of a blowup 0f;,...,n,) at the;jth term,
for1 <j <r —1lisgiven by

/
(nh sy M1, Ty + ]-7 17nj+1 + ]-7nj+27 cee 7n7‘)

/! /! / / / / /!
=M+ 1. n +Lnl+1nh g, ni o+ 1,00, ).

On the other hand, for the induction step in the framed syrgesentation described in
Section 2.8, we insert a zero framed new strand betweeyitlthend the(;j + 1)st strand
and relabel the strands linearly from left to right so thatlew strand has index+ 1. We
also insert a new—1)-surgery curve linking the strands2, . . ., j, j + 2 avoiding the new
(j+1)ststrand. The induction hypothesis implies that by blovdogn all the(—1)-curves
except the new one, the framings of the strands are given by

(s, gy,

We simply observe that blowing down the last inseited )-surgery curve addsto the
new framing of the firsyj strands and théj + 2)nd strand which is consistent with the
blowup formula above.

Next we show that the two braids are in fact equivalent in tmeglement oL.. Asthe in-
duction hypothesis we suppose that the two braids are dgqoivar anr-tuple(n,, ..., n,)
and then we apply a blowup t@, ..., n,) at thejth term, forl < j < r — 1, as the in-
duction step. According to the braid description in SecBo®, we insert a new strand
between thgth and(;j + 1)st strand, which is a parallel copy tli¢ + 1)st strand, corre-
sponding to the blowup at thgh term. The induction hypothesis implies that by blowing
down all(—1)-curves except the new one, with the new indexing,(jhe 1)st strand links
the (j + 2)nd strand’ , times. This is because tfig¢ + 1)st strand is nothing but a par-
allel copy of the(j + 2)nd strand, and their linking is determined by the framinghef t
former (5 + 1)st strand. Similarly, they both wrap around the strands ¢ol¢ft of them
n’;,, —1times. The effect of blowing down the last insertedl )-curve linking the strands
1,2,...,7,j+ 2 avoiding the new strand (now indexed with- 1) is illustrated on the left
in Figurel4, where the new strand is represented by the threcu

By blowing down the last—1)-curve, the strands, 2, ..., j, 7 + 2 will acquire a full
right twist as shown in the middle in Figure 4. When we pull thgring” in the thin curve
down, it becomes clear how th{g + 1)st strand wraps around the strands to the left of it
n’;,, — 1times as depicted on the right in Figlide 4. In this new bragdrtbmber of times
any strand wraps around the strands to the left of it is ctersisvith the blowup formula
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FIGURE 4. Blowing down the—1)-curve

given above. In particular, thg + 2)nd strand wraps around the strands to the left of it
n’;,, times.

To verify our claim for the case of a blowup of artuple at thejth term forj = r is
much easier and it is left to the reader.

2.5. Genus-zero PALF on the fillings. The open book decomposition 6f x S? de-
scribed in Sectioh 23, corresponding to any sequence iof btowups from(0) to a k-
tuplen € Zk(p%q), is compatible with the unique tight contact structurenx S%. The

genus-zero PALF oveb? whose boundary is given by this open book is diffeomorphic to
St x D? since the tight contac! x S? has a unique Stein filling up to diffeomorphism. A
handlebody decomposition of this PALF ¢t x D? can be obtained from the closure of
the framed braid in Sectidn 2.3 by converting thramed surgery curves—the strands of
the braid—to dotted circles representingandles, where each-1)-surgery curve linking
the strands of this braid represents a vanishing cycle.
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Inserting the linkL into this diagram completes the handlebody decompositidheo
desired PALF onV, ,(n), since each component bf also represents a vanishing cycle.
This is because each component.aan be Legendrian realized on the planar page of the
open book of5! x S2.

As a consequence, the resulting contact structuré(@ng) is obtained by Legendrian
surgery from the standard tight contagt x S2. The ordered vanishing cycles of this
PALF onWV, ,(n) can be explicitly described on a disk wittholes by the algorithm given
in Section 2.B, where we add a Dehn twist corresponding tb eamponent of. at the
end. Summarizing we obtain

Theorem 3. There is an algorithm to present any minimal symplectiafillof the canoni-
cal contact structure on a lens space as an explicit genusR&LF over the disk.

We would like to point out that the PALF in Theorém 3 can be otatd explicitly which
therefore leads to aabsolutehandlebody decomposition of any symplectic filling at hand
as opposed to the relative decomposition depicted in Fiure

2.6. An example. In the following we illustrate our algorithm to construct argis-zero
PALF on the symplectic fillingV s, 47)(n) of the canonical contact structure @81, 47),
wheren = (3,2,1,3,2). Note that3l = [2,4,3,3,2] and2- = [3,2,3,3,3].

According to Lisca’s classificatiorni} s 47(n) represents one of the six distinct dif-
feomorphism classes of minimal symplectic fillings of th@aaical contact structure on
L(81,47). The linkL in Lisca’s description of the filling in question has threemgonents
in total, two of which are linking the third and one linkingetffifth unknot in the chaim
(see Figurels).

First we slide2-handles in the chain over each other and obtain a new sudiggyam
as shown on the right in Figuké 5. The new unknots can be drawimeaclosure of a braid
and their framings are given ky, ....n%) = (3,2, 2, 3,2). In addition, two components
of L link the first three strands, and one component links all ttands of this braid.

On the other hand, positive stabilizations of the standaehdook ofS! x S? corre-
sponding to the blowup sequence

(1,1) = (2,1,2) — (3,1,2,2) — (3,2,1,3,2) = n

is depicted in Figurgl6. The monodromy of our PALFI6#y; 47y((3,2,1,3,2)) is given as
the product

$19€29€35ﬂ§%
of right-handed Dehn twists along the four stabilizing @sw,, x5, 3, 55 in the order they
appear and three more right-handed Dehn twists correspgialihe linkL (see Figurél?).

Two of these latter ones are along two disjoint copies of aiewiurvey; encircling the
first three holes and one is along a convex cuyyencircling all the holes. Moreover,
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FIGURE 5. Handle slides

2nd hole splits

o 55 (0@

2nd hole splitsi

©

3rd hole splits

FIGURE 6. Positive stabilizations of the standard open book'ok 5>
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a handle decomposition ®(s; 47 ((3,2, 1, 3,2)) including five1-handles, where one can
explicitly see the PALF is shown in Figulré 7.

FIGURE 7. Monodromy x1x2x3ﬁ27§’y5 of the PALF on
Wis147((3,2,1,3,2)) and its handlebody diagram

3. MONODROMY SUBSTITUTIONS AND RATIONAL BLOWDOWNS

The lantern relation in the mapping class group of a spheite feur holes was discov-
ered by Dehn although Johnson named it as the lantern melatier rediscovering it in
[11]. This relation and its generalizations have been é&ffely used recently in solving
some interesting problems in low-dimensional topologye KRy point is that the lantern
relation (cf. Figuré1) holds in any subsurface of anothefase which is homeomorphic
to a sphere with four holes.

Suppose that there is a “piece” in the monodromy factowratf a (not necessarily
positive or allowable) Lefschetz fibration which appearthadeft-hand side of the lantern
relation. Deleting that piece from the monodromy word argerting the right-hand side
is called a lantern substitution. It was shownl(ih [6] thatéfffect of this substitution in the
total space of the fibration is a rational blowdown operatishich can be easily seen as
follows: The PALF with monodromyi,d,dsd, is diffeomorphic to theD? bundle overs?
with Euler number4, while the PALF with monodromybc is diffeomorphic to a rational
4-ball with boundaryL (4, 1). Cutting a submanifold diffeomorphic to the*-bundle over
S? with Euler number-4 from a4-manifold and gluing in a rational-ball was named as
a rational blowdown operation by Fintushel and Stefn [8].
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FIGURE 8. The lantern relatiod, d,dsds = abc on a four-holed sphere

We would like to point out that the genus-zero PALF with moroody d, d»dsd, and the
genus-zero PALF with monodromapc represent the two distinct diffeomorphism classes
of the minimal symplectic fillings of L(4, 1), &can)-

Since the linear plumbing dp — 1) disk bundles ovet? with Euler numbers-(p + 2),

—2, ..., —2 has boundany.(p?, p — 1), which also bounds a rationatball, the cut-and-
paste operation described above is defined similarly far¢hse[[B]. The corresponding
monodromy substitution was discovered and named as thg daetion in [7], which
is essentially obtained by repeated applications of theefansubstitution. In fact, the
PALFs given by the products of right-handed Dehn twists appg on the two sides of the
daisy relation represent the two distinct diffeomorphidasses of the minimal symplectic
fillings of (L(p?, p — 1), &.an) for anyp > 2.

A generalization of Fintushel and Stern’s rational blowdaperation was introduced in
[17] involving the lens spacg(p?, pg—1) as the boundary. The corresponding monodromy
substitution for this rational blowdown can be computedig/technique introduced inl[7].

A rational blowdown along a linear plumbing graps the replacement of a neighbor-
hood of a configuration of spheres in a smo#¢tmanifold which intersect according to a
linear plumbing graph whose boundaryZi§?, pg — 1) by a rationak-ball with the same
oriented boundary.

4. SYMPLECTIC FILLINGS AND RATIONAL BLOWDOWNS

Our goal in this section is to prove our main result. We woikd to point out that our
proof does not rely on the results A [7].

Theorem 4. Any minimal symplectic filling of the canonical contact sture on a lens
space is obtained, up to diffeomorphism, by a sequence mhedtblowdowns along
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linear plumbing graphs from the minimal resolution of theresponding complex two-
dimensional cyclic quotient singularity.

Remark 5. According to[19] (see alsd9]), the rational blowdowns in Theordm 4 can be
realized assymplecticrational blowdowns.

It will be convenient to make the following definitions fortiproof of Theorerhl4.

Definition 6. For a positivek-tuplen = (n4,...,n;) € Z;, we say thah hasheights,

and writeht(n) = s, if s is the minimal number of strict blowups required to obtaiftom

an [-tuple of the form(1,2,...,2,1) € Z!, which we will denote by, for i > 2. We set
u; = (0) and definét(u;) = 0.

It is easy to check that
ht(n) = |n| — 2(k — 1),
foranyn = (ny,...,n.) € 2, where|n| = ny + - - - 4 n.

In addition, we slightly generalize the definition of thenanifold W, ,(n) as follows:

Definition 7. For a pair of k-tuplesn = (n4,...,ng),m = (mq,...,my) € Z*, with

n € Z;, we will denote by (n, m) the 4-manifold constructed as in Sectldn 2 from the
3-manifold N(n) = S' x % and the framed link. = |J_, L, associated tan, where

L; consists ofm;| components as in Figure 1 with the components having frasnirgif

m; > 0 and framingst1 if m; < 0.

Note that if eachn; > 0 andb; := n; + m; > 2 for all 7, then there are unique integers
1 < g < pwith (p,q) = 1 such that

L = [bl,bz...,bk].

p—q
In this casell/(n, m) is just the minimal symplectic fillingV, ,(n) of L(p,q) given by
Lisca. Also note that ifm has precisely one componemt; which is different from 0
with m; = £1 andn; = 1, then WQ,m) is a rational4-ball. To see this, note that
H{(W(n,m),Q) andH,(W (n,m), Q) are trivial precisely when the matrix describing the
linking of the attaching circles of the 2-handles with théted circles representing the 1-
handles is nondegenerate and it is easy to check that thetatds when one imposes the
above conditions om andn.

By the algorithm in Sectiohl 2, th&manifold W (n, m) with boundary admits a genus-
zero ALF (@chiral Lefschetz fibration) oveD?. In other words, the monodromy of the
Lefschetz fibration will include left-handed Dehn twistsnif, < 0 for somei. In the
following by themonodromy factorizatioaf 1/ (n, m) we mean the monodromy factoriza-
tion of this Lefschetz fibration oved? (which may include some left-handed Dehn twists).
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Moreover, by acancelling pair of Dehn twisteze mean the composition of a right-handed
and a left-handed Dehn twist along two parallel copies ofesanrve on a surface. Our
proof of Theoren ¥ is based on following preliminary result.

Lemma 8. Given a pair ofk-tuplesn = (ny,...,ng),m = (mq,...,my) € ZF, with

n € Z,ands = ht(n) > 1, there exists a sequence lotuplesny,...,n, € Z; with
ny, = u, andn, = n such that, settingn, = n + m — n;, the monodromy factorization
of W(n;, m;) can be obtained from the monodromy factorizatioriiofn;_,, m;_;) by a
lantern substitution together with, possibly, the introdon or removal of some cancelling
pairs of Dehn twists foit < i < s.

Proof. The proof will be by induction os. Suppose that = ht(n) = 1. This means that
n = 1;(u_,) for somel < j < k — 2, wherey, : Z¥~! — Z* denotes the strict blowup at
the jth term. Lettingm’ = (m, ..., m}) = n+ m — u,, we find that

m,—1 ifi=j,
m;+1 ifi=j+1,

m; = e .
m;—1 ifi=j+2,
m otherwise
foranym = (my,...,my) € Z*. We compute the monodromy factorizationand¢’ of

W(n,m) and W (u,, m’), respectively. For this, consider a digk, with & holes ordered
linearly from left to right and label the boundary of tfte holea;, for 2 < i < k. Also,
label the convex curve containing the fifdtoles~;, for 1 < i < k, and label the convex
curve containing the¢;j + 1)st and the(j + 2)nd holess;. Finally label the convex curve
containing the firsj holes plus thé; +2)nd holeg;. Here “convex” is used as in the sense
of Sectio 2.B. Following the algorithm given in the sameisec we find that

r_ m} my,
¢_a2...ak/yl ...fyk

and

’ ’ r_1 | A} I /
_ my M1, M Mjt1 Mjt2 Mjt3 my,
o= aibjagis a0 G Yise Yies o e

We see that can be obtained fromy’ by the single lantern substitution
Q10427 Vi+2 = 0 05Yj41-

Note, however, that if eithem} < 0 or m;+2 < 0, then we will need to introduce a
cancelling pair of Dehn twists into the monodromy factadtima ¢’ before we can apply
the lantern substitution. Also, if;,, < —1, then after applying the lantern substitution
we will remove a cancelling pair of Dehn twists which appaarthe monodromy. This
finishes the proof fos = 1 by settingm, = m’.
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Now suppose thatis a positive integer and it is known that for every pairkefuples
n,m € Z¥ with n € Z;, ands = ht(n) < t there exists a sequencefofuplesny, ..., n, €
Z. with ng = u, andn, = n such that, settingh, = n + m — n;, the monodromy factor-
ization of W (n;, m;) can be obtained from the monodromy factorizatiomofn; 1, m;_;)
by a lantern substitution together with, possibly, theadtrction or removal of some can-
celling pairs of Dehn twists for < i < s. Letn, m € Z* be a pair oft-tuples withn € Z,
ands = ht(n) = t + 1. Then there is aifk — 1)-tuplen’ € Z;_; such thatn = ;(n’)
andht(n') = . Letp;,1: Z¥ — ZF-! denote the maply, ..., 1) — (I, ... Lip1, .., 1)
given by omitting the(j + 1)st entry. By the induction hypothesis, there is a sequence
of (k — 1)-tuplesny,...,n, € Z,_, with nj = u,_; andn; = n’ such that, setting
m; = n’+ p;+1(M) — n;, the monodromy factorization ¥ (n;, m}) can be obtained from
the monodromy factorization ¥ (n;_,, m;_,) by a lantern substitution together with, pos-
sibly, the introduction or removal of some cancelling paf®ehn twists forl < i < ¢.
Consider the sequence = ¢;(n;_,) for 1 <i < s =t + 1 of k-tuples inZ;, obtained by
taking strict blowups at thgth term of the(k — 1)-tuples in the sequencg, ..., n; . Let
Ny = Uy and setm; = n+m —n, for 0 < i < s. We claim that the monodromy factor-
ization of W (n;, m;) can be obtained from the monodromy factorizatiomiofn; 1, m;_;)
by a lantern substitution together with, possibly, theddtrction or removal of some can-
celling pairs of Dehn twists for < i < s.

Fori = 1 the proof follows from above sinde(n;) = 1. Suppose that> 1. Then the
monodromy factorizatiog,_, of W (n,_,, m!_,) has the form

Gig=rc1 -0y,
wherec, denotes a convex Dehn twists B,_; for 1 < » < [. It follows that the mon-
odromy factorizatior;_; of W (n;_;, m;_;) has the form
Qﬁifl = El .. 'aﬁj’Y;nJril_l’j+l,

wheres; andv,; are convex Dehn twist aD,, as before andh;_; ;, denotes théj +1)st
component ofn;_;. Here we have used the convention that is a convex Dehn twist of
D;,_; around a collection of holeH, theno denotes the convex Dehn twist 6%, around

the collection of holeg] given by
H={r|1<r<j+landre H}U{r+1|j+1<r<k-—1landre H}.

By the induction hypothesis, the monodromy factorizatign, of W(n,_,,m._,) is ob-

tained from the monodromy factorizatien_, of W (n,_,,m;_,) via a lantern relation of
the form

Cilcigcigci4 - C’igcisci77
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where, for eachr, ¢; is a convex Dehn twist oD, _; which may or may not be in-
cluded in the set of convex Dehn twisfs,, ..., ¢}, together with, possibly, the intro-
duction or removal of some cancelling pairs of Dehn twistsfollows easily that the
monodromy factorizatio; of W (n;, m;) is obtained from the monodromy factorization
¢;—1 of W(n,_1,m;_;) via a lantern relation of the form

Cilcizcigc’i4 - C’igcisc’i77

together with, possibly, the introduction or removal of gorancelling pairs of Dehn twists,
completing the proof of the induction step and the lemma. O

Proof of TheorerlldLetn = (ny,...,n,), M = (myq, ..., m;) bek-tuples inZ* with n €
Z, andm nonnegative. Assume thaf+m; > 1forall 1 < j < k. We prove thatV' (n, m)
is obtained fromiV (u,, my) by a sequence of rational blowdowns, whetrg= n+m —uj.
The statement of the theorem follows from this.

Lets = ht(n). If s = 0, thenWW(n, m) corresponds to the filling of a lens space by the
canonical plumbing and there is nothing to check. Suppaaestk> 1 and consider the
sequence

1) n=n"-n'—... >n°

given by taking the strict blowdown at the leftmost possible(Note, in particular, that
if the first term ofn is 1, then, according to the definition of a strict blowdowngannot
be strictly blown at this term.) Here’ ¢ Z*~“for 0 < i < s, andn® = u,_,. From
the proof of Lemmdl8, there is an associated sequapce ng,...,n, = n such that,
settingm; = n + m — n;, the monodromy factorization d#’(n;, m;) is obtained from
the monodromy factorization dfi"(n;,_;, m;_;) by a lantern substitution together with,
possibly, the introduction or removal of some cancellinggaf Dehn twists. Le0 = ig <

11 < --- <1, = s be the sequence of indices such timathas all components nonnegative
if and onlyi = 4; for somej. We claim thatiV'(n;,, m;,) is obtained fromiV (n;,_,, m;,_,)

by a rational blowdown fot < j < r. The proof is by induction on.

Suppose that = 1, that is,i; = s. We first show thah = n, contains exactly one
component; equal tol with 1 < j < k. On the contrary, suppose thatontains at least
two such components. Consider the strict blowdown sequien@® and letn’ be the first
tuple which has less interior components equadl tbann. It follows from the assumption
thatt < s. Letm = m", ..., m* denote the associated sequence constructed as follows: if
n’ is obtained froom‘~! by a strict blowdown at thgth term, letm’ = p;(m*~!), where,
as beforep;: ZF=*1 — 7F~"is the map given by omitting thgth entry. For each pair
(n’, m%), consider the sequen¢e), = u,_;,my),...,(n’_, = n’ m’._, = m‘) constructed

s—1 s—1

as in the proof of Lemmad 8 from the portion of the blowdown ssme[(1) beginning at’.
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Now consider the following diagram:

Note that, by construction, every interior componentnbf, + m’_, is greater than.
(Here the condition that the strict blowdowns are chosendorssistent fashion, such as
taking taking each strict blowdown at the leftmost possibks we have done, is essential.)
Hence every interior component of + mf, being equal to the corresponding component
of nf_, + m’_,, is greater than. Sincen! = u,_; = (1,2,...,2,1), it follows that
every component ofnf is nonnegative (that this is true for the first and last conepds

of m{ follows from the fact that each componentrof_, is nonnegative). Now note that

m;;; can be obtained fromm; as follows: suppose that,_, is obtained frorm’~}_ , by

strictly blowing down at thejth term (and hence that] is obtained fromn; | also by

strictly blowing down at thejth term for0 < I < s —4.), thenmj | = x;(m}), where

Xj: ZFT — 7 is the map(z, .. ze) = (21, zimnmy 2, ze) given
by splicing into thejth position thejth component om‘~!, which, being an entry ah, is
nonnegative. It follows that every componentrof is nonnegative contradicting the fact
thatr = 1. This proves thah contains exactly one interior componentequal tol.

We now proceed as follows: Givem suppose that; is the only component that is
equal tol, with1 < j < k. Letm’ = (0,...,0,1,0,...,0), where thel is in the jth
position. Thenm’ < m, since every interior component of+ m is greater thari and
m is nonnegative. Now note th&t’(u,, m;) can be rationally blown down t&/(n, m’),
wherem; = n + m’ — u, (sincelV (u,, m;) corresponds to the filling of a lens space by
the canonical plumbing anid’(n, m’) is a rational-ball). By replacing the “piece” of the
monodromy factorization o’ (u,, my) that corresponds to the monodromy factorization
of W (uy, mg), wherem, = n+ m — u,, by the monodromy factorization &¥(n, m’), we
see that¥’ (n, m) is obtained fromi¥ (u,, my) by a rational blowdown.
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Now assume that > 1 and the claim is known to hold whenever< [. Suppose that
r = [+ 1 and consider the following diagram:

(=nl m=md) - (N, ,mi_) -~ (N = Uy, m)

r—11)

A A
1
1
1
1
1

(nzolv mzol) _____ > (nél = Up—i;, mf)l)

(ng = Ug, mg)

By the previous step, we know that there is exactly pmeth 1 < j < k such that thegth
component ofif, is 1. It follows thatWV (n? , m? ) is obtained froni¥ (nj, m{) by a rational
blowdown. Thus it is sufficient to show th&t’(nf ,m? ) is obtained fromiV/(nf , m? )
by a sequence of rational blowdowns. For this, consider tie(p;!_, ,m{'_; ). Since
in the sequencen;, my', ..., mi", the only tuples with all components nonnegative are
precisely the ones with subindices< i, —i; < --- < i,, —i; = s — iy, it follows from the
induction hypothesis that’(ni' _, ,m*_, ) is obtained fron#¥ (u,._;,, m{') by a sequence
of rational blowdowns. Now, arguing as before we find tHam? , m{ ) is obtained from
W (n?,m? ) by a sequence of rational blowdowns completing the inducsiep and the

217

proof of the theorem. O
The content of Corollary 5.2 and Theorem 6.1[in/[12] can bevered as a corollary:

Corollary 9. Any minimal symplectic filling of the canonical contact stiue on a lens
space can be realized as a Stein filling, .i.e. the underlgingothd-manifold with bound-
ary admits a Stein structure whose induced contact streadarthe boundary agrees with
the canonical one.

Proof. Any minimal symplectic filling of the canonical contact stture on a lens space
admits a PALF oveD? by Theoreni B (also by [20, Theorem1]). This implies that the u
derlying smootht-manifold with boundary admits a Stein structure whose oadicontact
structure on the boundary is compatible with the open bodkéed from the PALF]1].
By the proof of Theorerhl4, the induced open book on the boyrddixed for all distinct
PALFs constructed for a given lens space. The desired riedlalivs since we know that
the induced open book on the boundary of the canonical PALEa@minimal resolution
is compatible with the canonical contact structlre [15]. O
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Corollary 10. The canonical contact structure on a lens space admits augnigini-
mal symplectic filling—represented by the Stein structiaehe PALF we constructed on
the minimal resolution—up to symplectic rational blowdoawrd symplectic deformation
equivalence.

Proof. This result follows from the combination of Theoréin 4, RekfarCorollary(9 and
the fact that each diffeomorphism type of a minimal sympéefiling of the canonical
contact structure on a lens space carries a unique synmpktaticture up to symplectic
deformation equivalence which fills the contact structarguestion([2], 3]. O

Corollary 11. Any Milnor fiber of any smoothing of the complex two-dimemali@yclic
quotient singularity can be obtained, up to diffeomorphisyna sequence of rational blow-
downs along linear plumbing graphs from the Milnor fiber edffnorphic to the minimal
resolution of the singularity.

Proof. This corollary immediately follows from Theordm 4 coupleiitvthe results in[13],
in which Nemethi and Popescu-Pampu prove that the clagsificaf Milnor fibers for a
cyclic quotient singularity agrees with Lisca’s classifica of symplectic fillings for the
canonical contact singularity link, up to diffeomorphism. O

4.1. An example. We would like to describe how one can obtain the symplectiadil
Wis1,47)((3,2,1,3,2)) from the minimal resolutioVs; 47)((1,2,2,2,1)) by a single ra-
tional blowdown.

The monodromy of the the canonical PALF ®lis; 47y((1,2,2,2,1)), which is illus-
trated in Figuré©(a), can be expressed as

Q03040577 V37473
by our algorithm using the blowup sequence
(1,1) — (1,2,1) — (1,2,2,1) — (1,2,2,2,1).

In the following we describe a sequence of lantern subgiisf together with introduc-
tion or removal of some cancelling pairs of Dehn twists, ttaobthe PALF (see Figuid 7)
we constructed on the symplectic fillinds; 47)((3, 2, 1, 3,2)) from the canonical PALF
(see Figur&l9(a)) on the minimal resolutidns; 47)((1,2, 2,2, 1)).

We first insert a cancelling pair of Dehn twists along two pafaopies of a curve
encircling the first two holes to obtain the ALF in Figlile 9¢ti}h monodromy

a7 (7 12) V37473

We apply a lantern substitutionas vy, = 023273 as indicated in Figurg 9(b), to obtain
the new ALF depicted in Figufd 9(c) with monodromy

N i N 7 TR [ Y e S P P
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FIGURE 9. Thicker curves indicate right-handed Dehn twists d@nheled
disk, where left-handed Dehn twists are drawn as dashe@&surv

where we also inserted a pair of cancelling Dehn twists atatogparallel copies of a curve
encircling the first four holes.

Next we apply a second lantern substitutigni,0,74 = ~v.wz3 indicated in Figur€l9(c),
to obtain the new ALF depicted in Figure 9(d) with monodromy

asv: 1 (v ) wrs B3 = asvy i wrsBeyie

where we removed a pair of cancelling Dehn twists encirdimgfirst two holes. A final
lantern substitution; wasys = 42125 is applied as indicated in Figuré 9(d), together with
the removal of a pair of cancelling Dehn twists encircling thist four holes, to obtain a
PALF whose monodromy is

(V2 "Ya)T12223 Ba3 75 = T12223 5273 Y5

It is clear that this monodromy is equivalent to the monodrahthe PALF on the sym-
plectic filling Ws1 47y((3, 2, 1, 3,2)) depicted in Figurgl7.
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Using the notation in Lemnid 8, the above sequence of thréertasubstitutions can be
expressed as

Wis147)((1,2,2,2,1)) = W((1,2, 2,2,1),(2,0,0,1,1,2))
W((1,3,1,3,1),(2,-1,2,0, 2))

W((2,2,1,4,1),(1,0,2,-1,2))

W((3,2,1,3,2),(0,0,2,0, 1)) Wis1an((3,2,1,3,2)).

We show that the fiIIing/V(gLM)(( ,2,1,3,2)) is in fact obtained from the minimal res-
olution Ws1 47)((1, 2, 2,2, 1)) by a single rational blowdown as follows: The monodromy
of the PALF onWs; 47)((3,2,1, 3, 2)) can be obtained from the monodromy of the PALF
onWis1.47((1,2,2,2,1)) by a single monodromy substitution (see Fidure 10) as

Q0340577 Y4Y57375 = T122%3027373 s,

which is the combination of the three lantern substitutitmggether with the introduction
or removal of cancelling pairs of Dehn twists.

FIGURE 10. A m0n0dr0my SubStituti0m2&3a40z5’y%*y4’y5 = 33'1.1’21'352’}/3.

The PALF represented on the left-hand side in Figude 10 fedfiorphic to the lin-
ear plumbing of disk bundles ové with Euler numbers-2, —5, —3, which can be di-
rectly checked by drawing the handlebody diagram of thisfPPALd applying some handle
slides and cancellations. On the other hand, the PALF onigihe-lnand side is a rational
homology4-ball since the curves in the monodromy spans the rationaldhagy of the
genus-zero fiber. We conclude that this monodromy subistitwibrresponds to a rational
blowdown since »

[—2, -5, —3] = — .
53— 1
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Remark 12. When we run our algorithm for the two distinct minimal synsptefillings
of (L(p?,p — 1), &an), fOr anyp > 2, we obtain another proof of the daisy relatifry.
Our method would yield many more interesting “positive”agbns in the mapping class
groups of planar surfaces.

We would like to finish with the following question: Does Thiem[4 hold true for
minimal symplectic fillings of any Milnor fillable conta8tmanifold supported by planar
open book?
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