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ABSTRACT. In a previous work, we proved that each minimal symplectic filling
of any oriented lens space, viewed as the singularity link of some cyclic quotient
singularity and equipped with its canonical contact structure, can be obtained
from the minimal resolution of the singularity by a sequence of symplectic ra-
tional blowdowns along linear plumbing graphs. Here we give a dramatically
simpler visual presentation of our rational blowdown algorithm in terms of the
triangulations of a convex polygon. As a consequence, we are able to organize
the symplectic deformation equivalence classes of all minimal symplectic fillings
of any given lens space equipped with its canonical contact structure, as a graded,
directed, rooted, and connected graph, where the root is the minimal resolution
of the corresponding cyclic quotient singularity and each directed edge is a sym-
plectic rational blowdown along an explicit linear plumbing graph. Moreover, we
provide an upper bound for the rational blowdown depth of each minimal symplectic
filling.

1. INTRODUCTION

For each pair of coprime integers (p, q) with p > q ≥ 1, the lens space L(p, q) is
orientation preserving diffeomorphic to the link of some cyclic quotient singular-
ity. Let ξcan denote the canonical contact structure on L(p, q), viewed as the sin-
gularity link. Lisca [12] classified the minimal symplectic fillings of (L(p, q), ξcan),
up to diffeomorphism. These diffeomorphism classes are parametrized by a set
Zk(

p

p−q
) (see Section 2 for its definition) of certain k-tuples of nonnegative integers,

where k is the length of the Hirzebruch-Jung continued fraction expansion of p

p−q
.

Moreover, each diffeomorphism class admits a unique symplectic structure, up to
symplectic deformation equivalence. [1].

Let Zk denote the set of admissible k-tuples of nonnegative integers which rep-
resent zero (see Section 2 for its definition). As observed by Stevens [18], the set
Zk can be identified with the set T (Pk+1) of all triangulations of a convex polygon
Pk+1 with k + 1 vertices. By definition, Zk(

p

p−q
) is a certain subset of Zk. It fol-

lows that the set of symplectic deformation classes of minimal symplectic fillings
1
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of (L(p, q), ξcan) can be bijectively identified with a certain subset of T (Pk+1), which
we denote by T p,q(Pk+1) in this paper.

In [2], we proved that, up to symplectic deformation equivalence, each minimal
symplectic filling of (L(p, q), ξcan) can be obtained from the canonical symplectic
filling, which is the minimal resolution of the corresponding cyclic quotient sin-
gularity, by a sequence of symplectic rational blowdowns along linear plumbing
graphs. To prove this result, we first constructed an explicit planar Lefschetz fibra-
tion on each minimal symplectic filling. Then we provided an algorithm so that, for
each minimal symplectic filling, one can start with the monodromy factorization
for the Lefschetz fibration on the minimal resolution and, by applying a sequence
of lantern substitutions, obtain the monodromy factorization for the Lefschetz fi-
bration on the minimal symplectic filling at hand. According to our algorithm,
one has to allow achiral Lefschetz fibrations in the mid-sequence but the end of
the sequence is always a (positive) Lefschetz fibration. Finally, we showed that for
each minimal symplectic filling, the concatenation of these lantern substitutions is
a sequence of symplectic rational blowdowns along linear plumbing graphs.

In order to show that our rational blowdowns are in fact symplectic (not just
smooth) surgeries, we relied on the fact that each such monodromy substitution in
the monodromy factorization of a Lefschetz fibration is a symplectic surgery, due
to the work of Gay and Mark [9].

Here we present our algorithm in terms of the triangulations of a convex poly-
gon. The crucial observation is that each lantern substitution in the monodromy
factorization of the corresponding planar Lefschetz fibration is realized by a diag-
onal flip move in the triangulations (see Section 3 for its definition), and therefore
each rational blowdown which is obtained by a concatenation of lantern substitu-
tions is realized by a sequence of diagonal flip moves. Moreover, with this new
point of view, we are able to organize the symplectic deformation equivalence
classes of all minimal symplectic fillings of (L(p, q), ξcan) as a graded, directed,
rooted, connected graph Gp,q

k , where the root (meaning, the only vertex with no
incoming edges) is the minimal resolution of the corresponding cyclic quotient
singularity and each directed edge is a symplectic rational blowdown along an ex-
plicit linear plumbing graph. The grading is provided by the second Betti number
of the minimal symplectic filling, where the minimal resolution has the highest
grading.

Theorem 1. Let (p, q) be a pair of coprime integers with p > q ≥ 1, and let k be the
length of the Hirzebruch-Jung continued fraction expansion of p

p−q
. Then there is a graded,

directed, rooted, connected graph Gp,q

k , which we call the rational blowdown graph, such
that
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(1) there is a bijection between the set of vertices of Gp,q

k and the set T p,q(Pk+1) of
certain triangulations of the convex polygon Pk+1 with k + 1 vertices, which pa-
rameterizes the symplectic deformation equivalence classes of minimal symplectic
fillings of (L(p, q), ξcan),

(2) the root vertex of Gp,q

k corresponds to the initial triangulation, representing the
minimal resolution,

(3) each directed edge in Gp,q

k corresponds to a sequence of diagonal flips in the triangu-
lations, which represents a symplectic rational blowdown along a linear plumbing
graph, and

(4) each vertex of Gp,q

k is graded by the second Betti number of the minimal symplectic
filling it represents and each directed edge drops the grading by the number of
diagonal flips used to construct that edge in item (3).

Remark 2. There is an elementary algorithm to obtain the linear plumbing graph
for each directed edge of Gp,q

k described in item (3) of Theorem 1, based on the se-
quence of diagonal flips used to construct that edge. We formulated this algorithm
as Proposition 43.

The graph Gp,q

k of Theorem 1 is obtained from another graded, directed, rooted,
connected graph, which we denote by Gk. The set of vertices of Gk corresponds
bijectively to the set T (Pk+1) of all the triangulations of the convex polygon Pk+1,
and each directed edge connects two triangulations which differ only by a single
diagonal flip along a distinguished diagonal. We think of the vertices of Gk as light
bulbs and the edges as the wires connecting the light bulbs. Once a pair (p, q) is
fixed as in Theorem 1, the graph Gp,q

k is essentially obtained from the graph Gk by
turning on some of the light bulbs in Gk determined by (p, q), and inserting new
wires, if necessary, to bypass the light-bulbs which are not turned on.

It is possible that the symplectic deformation type of some minimal symplectic
filling of (L(p, q), ξcan) can be obtained from the minimal resolution by applying dis-
tinct sequences of symplectic rational blowdowns. This phenomenon is certainly
reflected in our graph Gp,q

k , as different possible paths (i.e., concatenations of the
directed edges) from a vertex (in particular the root vertex) to any other are clearly
visible in Gp,q

k .

Definition 3. A minimal symplectic filling of (L(p, q), ξcan) is said to have rational blow-
down depth r if the minimal number of successive symplectic rational blowdowns along
linear plumbing graphs needed to obtain the filling from the minimal resolution is equal to
r, where the depth of the minimal resolution is set to be zero.

Definition 4. For k ≥ 3, the depth of n = (n1, . . . , nk) ∈ Zk, denoted by dpt(n), is the
number of 1’s in the interior of n, i.e., dpt(n) is the cardinality of the set {i | 1 < i <
k and ni = 1}.
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Proposition 5. Let Wp,q(n) denote the minimal symplectic filling of (L(p, q), ξcan) that
corresponds to n = (n1, . . . , nk) in the parameterizing set Zk(

p

p−q
). Then the rational

blowdown depth of Wp,q(n) is bounded above by dpt(n). In particular, if dpt(n) = 1, then
Wp,q(n) is obtained from the minimal resolution by a single symplectic rational blowdown.

Conjecture 6. The rational blowdown depth of Wp,q(n) is in fact equal to dpt(n).

In Propositions 50 and 52, we give examples of minimal symplectic fillings of ra-
tional blowdown depth 2, and in Proposition 54, we give an example of a minimal
symplectic filling of rational blowdown depth 3, all satisfying Conjecture 6.

Notice that each Milnor fibre of any given cyclic quotient singularity is a Stein
(and hence minimal symplectic) filling of (L(p, q), ξcan). By the work of Christo-
phersen [4] and Stevens [18], the set Zk(

p

p−q
) also parameterizes these Milnor fibres,

up to diffeomorphism. As a matter of fact, Lisca [12] proved that each diffeomor-
phism class of minimal symplectic fillings of (L(p, q), ξcan) contains a Stein repre-
sentative and proposed an explicit one-to-one correspondence between the set of
such Stein representatives and the set of Milnor fibres of the corresponding cyclic
quotient singularity, which was subsequently verified by Némethi and Popescu-
Pampu [15].

On the other hand, it is well-known that, for any (L(p, q), ξcan), the Milnor fibre
of the Artin smoothing component of the corresponding cyclic quotient singularity
gives a minimal symplectic filling which is symplectic deformation equivalent to
the one obtained by deforming the symplectic structure on the minimal resolution
(see [3]) of the singularity. The result below is an immediate consequence of the
aforementioned one-to-one correspondence of Némethi and Popescu-Pampu [15].

Corollary 7. Analogues of Theorem 1 and Proposition 5 hold when minimal symplectic
fillings are replaced by Milnor fibres of the corresponding cyclic quotient singularity and
the minimal resolution is replaced with the Milnor fibre of the Artin smoothing component.

2. CONTINUED FRACTIONS AND TRIANGULATIONS OF A CONVEX POLYGON

Suppose that p > q ≥ 1 are coprime integers and let

p

p− q
= [b1, b2, . . . , bk] := b1 −

1

b2 −
1

. . . −
1

bk

be the Hirzebruch-Jung continued fraction expansion, where bi ≥ 2 for 1 ≤ i ≤ k.
Note that the sequence b1, b2, . . . , bk is uniquely determined by the pair (p, q).
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Definition 8. For any integer k ≥ 2, a k-tuple of positive integers (n1, . . . , nk) is called
admissible if each of the denominators in the continued fraction [n1, . . . , nk] is positive.

Definition 9. For any integer k ≥ 2, let Zk ⊂ Z
k denote the set of admissible k-tuples of

positive integers n = (n1, . . . , nk) such that [n1, . . . , nk] = 0 and let Z1 = {(0)}. We set

Zk(
p

p−q
) = {(n1, . . . , nk) ∈ Zk | 0 ≤ ni ≤ bi for i = 1, . . . , k}.

For any integer k ≥ 2, let Pk+1 denote a convex polygon in the plane with k + 1
vertices. There is a simple identification of the set Zk with the set T (Pk+1) of all
triangulations of Pk+1 due to Stevens [18] as follows. Fix and label a distinguished
vertex of Pk+1 by V⋆ and label the rest of the vertices as V1, . . . , Vk traveling counter-
clockwise around Pk+1. To each triangulation ∆ ∈ T (Pk+1), associate the k-tuple
n = (n1, . . . , nk) ∈ Zk so that ni is the number of triangles in ∆ including the vertex
Vi, which gives an explicit bijection from T (Pk+1) to Zk.

Definition 10. For any k ≥ 2, we denote the Stevens’ bijection described above as

Φk : T (Pk+1) → Zk,

and set

T p,q(Pk+1) := Φ−1
k (Zk(

p

p−q
)).

Remark 11. Note that for any k ≥ 2,

|T (Pk+1)| = |Zk| =
1

k

(
2k − 2

k − 1

)
,

which is nothing but the Catalan number Ck−1.

Definition 12. Let s be an integer greater than or equal to 2. For any 1 ≤ j ≤ s − 1,
the blowup of an s-tuple (n1, . . . , ns) of positive integers at the jth term is the (s + 1)-
tuple (n1, . . . , nj−1, nj+1, 1, nj+1+1, nj+2, . . . , ns). We call such a blowup as an interior
blowup. The exterior blowup of an s-tuple (n1, . . . , ns) of positive integers is the (s + 1)-
tuple (n1, . . . , ns−1, ns + 1, 1). We also say that (0) → (1, 1) is the initial blowup. The
inverse of a blowup is called a blowdown.

It is well-known (see, for example, [12, Lemma 2]) that for any n ∈ Zk, there is a
blowup sequence

(0) → (1, 1) → · · · → n

starting with the initial blowup (0) → (1, 1) and ending with n, although such a
blowup sequence is not necessarily unique. This observation leads to the following
definition of the height of n, which appeared in [2].
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Definition 13. For k ≥ 2, we say that n = (n1, . . . , nk) ∈ Zk has height r, and denote it
by ht(n) = r, if r is the minimal number of blowups required to obtain n from an s-tuple
us = (1, 2, . . . , 2︸ ︷︷ ︸

s−2

, 1) ∈ Z
s, for some s ≥ 2. We also set u1 = (0) and ht(u1) = 0.

It follows that ht(us) = 0 for all s ≥ 1.

Example 14. Consider the following blowup sequence

(0) −−−→
initial

(1, 1) −−−−→
exterior

(1, 2, 1) −−−−→
interior

(1, 3, 1, 2) −−−−→
interior

(1, 3, 2, 1, 3)

−−−−→
exterior

(1, 3, 2, 1, 4, 1) −−−−→
interior

(2, 1, 4, 2, 1, 4, 1) = n ∈ Z7.

Note that there is a blowdown sequence

n = (2, 1, 4, 2, 1, 4, 1) → (1, 3, 2, 1, 4, 1) → (1, 3, 1, 3, 1) → (1, 2, 2, 1) = u4,

obtained by blowing down at the leftmost interior 1 at each step, which shows that
ht(n) ≤ 3, and as a matter of fact ht(n) = 3 by Lemma 15 below, an observation
that was mentioned in [2, page 1526], without a proof. Note that there are two
other blowdown sequences

n = (2, 1, 4, 2, 1, 4, 1) → (2, 1, 4, 1, 3, 1) → (2, 1, 3, 2, 1) → (1, 2, 2, 1) = u4,

n = (2, 1, 4, 2, 1, 4, 1) → (2, 1, 4, 1, 3, 1) → (1, 3, 1, 3, 1) → (1, 2, 2, 1) = u4,

obtained similarly but by making different choices.

Lemma 15. By setting, |n| = n1 + · · · + nk, we have ht(n) = |n| − 2(k − 1) for any
n ∈ Zk.

Proof. Write g(n) = |n| − 2(k − 1), for n ∈ Zk. It is easy to see that for n ∈ Zk,
g(n) = 0 if and only if n = uk. Since 0 ≤ g(n)− g(n′) ≤ 1 whenever n′ is obtained
by blowing down n, it follows that ht(n) ≥ g(n). We check that the inequality
ht(n) ≤ g(n) also holds. To see this note that if n 6= uk, then we can always
perform an interior blowdown on n. Indeed, suppose that for some n ∈ Zk that is
different from uk, there are no interior 1’s. Then blowing down n, necessarily at an
exterior 1, would give a (k−1)-tuple n′ which again had no interior 1’s. Repeatedly
blowing down we must eventually get u2. Since each blowdown was at an exterior
1, the original k-tuple n must be uk, contrary to assumption. Thus blowing down
n at an interior 1 g(n)-times will give uk−g(n). It follows that we have ht(n) ≤ g(n)
and hence ht(n) = g(n). �

Remark 16. It follows from the proof of Lemma 15 that ht(n) is the number of
interior blowups in any blowup sequence (0) → (1, 1) → · · · → n.
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3. DIAGONAL FLIPS ALONG DISTINGUISHED DIAGONALS

In the convex polygon Pk+1, with the fixed distinguished vertex V⋆ and the rest
of the vertices V1, . . . , Vk labelled counterclockwise as in Section 2, there are exactly
k− 2 distinguished diagonals d1, . . . , dk−2, defined so that for each 1 ≤ i ≤ k− 2, the
diagonal di connects V⋆ to the vertex Vi+1.

Definition 17. For any integer k ≥ 3, the triangulation ∆⋆ ∈ T (Pk+1) which is obtained
by using precisely the set {d1, . . . , dk−2} of all distinguished diagonals is called the initial
triangulation.

d1

d1

d2
d1

d2

d3
d1

d2

d3

d4

FIGURE 1. Initial triangulations for k = 3, 4, 5, 6, respectively.

In Figure 1, we depicted the initial triangulations for k = 3, 4, 5, 6. Note that if d
is any diagonal which appears in any triangulation ∆ ∈ T (Pk+1), then the union of
the two triangles on either side of d makes up a quadrilateral which is bisected by
d into two triangles of ∆.

Definition 18. Suppose that ∆ ∈ T (Pk+1) is a triangulation which includes a distin-
guished diagonal di for some 1 ≤ i ≤ k − 2. A diagonal flip of ∆ along di is a transfor-

mation of ∆ into another triangulation ∆̃ ∈ T (Pk+1) where di is replaced by the unique

non-distinguished diagonal d̃i of the unique quadrilateral which is bisected by di into two
triangles of ∆.

In Figure 2, for example, we depicted a sequence of diagonal flips along distin-
guished diagonals, starting from the initial triangulation of the heptagon.

Remark 19. Note that the non-distinguished diagonal d̃i in Definition 18, depends on
the quadrilateral which is determined by specifying its three non-distinguished vertices.

We will refer to d̃i as the dual of the distinguished diagonal di in that quadrilateral. In

other words, the dual diagonal d̃i is the ”image” of the distinguished diagonal di under the
diagonal flip move.

In the following, for each integer k ≥ 3, we will describe the graded, directed,
rooted, connected graph Gk which organizes the triangulations of the convex poly-
gon Pk+1 with respect to their heights.
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d1

d2

d̃1

d̃2

d̃3d̃4

d3

d4

flip d1flip d2 flip d3flip d4

d̃2 d̃2 d̃2

d̃4 d̃4
d̃3

FIGURE 2. A sequence of diagonal flips.

Definition 20. The height of a triangulation ∆ ∈ T (Pk+1) is defined as the height of
Φk(∆) ∈ Zk under the Stevens’ bijection Φk.

Next we show that each diagonal flip along a distinguished diagonal increases
the height of a given triangulation by one.

Lemma 21. Suppose that ∆ ∈ T (Pk+1) is a triangulation which includes a distinguished

diagonal d. If ∆̃ ∈ T (Pk+1) is the triangulation obtained from ∆ by the diagonal flip along

d, then ht(∆̃) = ht(∆) + 1.

Proof. By Definition 18, the diagonal flip along the distinguished diagonal d occurs
in a quadrilateral which has one distinguished vertex V⋆ and three other vertices,
say Vr, Vs, Vt, ordered counterclockwise, where the distinguished diagonal d that

connects the vertices V⋆ and Vs is exchanged with the dual diagonal d̃ that con-
nects the vertices Vr and Vt. As a result of this exchange, the number of triangles
including the vertex Vs decreases by 1, but the number of triangles including each
of the two remaining non-distinguished vertices Vr and Vt of the quadrilateral in-
creases by 1. Since the number of triangles including each vertex of the polygon

Pk+1, other than Vr, Vs and Vt remains the same, it follows that ht(∆̃) = ht(∆) + 1,
by Lemma 15. �

Definition 22. For any n ∈ Zk, we set ∆(n) = Φ−1
k (n) ∈ T (Pk+1), where

Φk : T (Pk+1) → Zk

is the Stevens’ bijection.

It follows by Definition 20 that ht(∆(n)) = ht(n).

Proposition 23. For any integer k ≥ 3, there is a graded, directed, rooted, connected
graph Gk such that

(1) there is a bijection ψk from the set T (Pk+1) of all triangulation of the convex poly-
gon Pk+1 with k + 1 vertices, to the set of vertices of Gk,
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(2) the root of Gk is the image ψk(∆⋆) of the initial triangulation ∆⋆ = ∆(uk),

(3) if the triangulation ∆̃ ∈ T (Pk+1) is obtained from the triangulation ∆ ∈ T (Pk+1)
by a single diagonal flip along a distinguished diagonal, then there is a directed

edge from the vertex ψk(∆) to the vertex ψk(∆̃), and
(4) each vertex ψk(∆) is graded by the height of ∆ and the grading increases by one

along each directed edge.

Proof. Fix any integer k ≥ 3. We take the set T (Pk+1) of triangulations of the convex
polygon Pk+1 as the vertices of our graph Gk, which implicitly defines the bijection
ψk in Proposition 23. In the following we suppress ψk from the notation. To con-
struct the graph Gk, we organize the triangulations in T (Pk+1) with respect to their
heights. We define the root of Gk as the initial triangulation ∆⋆ = ∆(uk) ∈ T (Pk+1),
which is the only triangulation of height zero, by Lemma 15.

Right below the root vertex ∆(uk), we place vertices in the first row, correspond-
ing to height 1 triangulations of Pk+1, each of which is obtained from ∆(uk) by
a single diagonal flip along a distinguished diagonal. Since there are k − 2 dis-
tinguished diagonals {d1, . . . , dk−2} of Pk+1, we have k − 2 height 1 triangulations
which are naturally ordered from left to right according to which distinguished
diagonal we flip. Moreover, we insert an edge that connects the root vertex to each
of the height 1 triangulations. Hence the root vertex has no incoming edges, by
definition, and is connected to k − 2 distinct vertices by outgoing edges denoted
e1, . . . , ek−2, respectively, so that the end vertex of ei is obtained from ∆(uk) by the
diagonal flip along the distinguished diagonal di. See Figure 3 for the case k = 5.

Next we place the triangulations (i.e. vertices) of height 2 in a row right below
the row of vertices of height 1, and insert the connecting edges between height
1 and height 2 vertices as follows. Note that each height 2 triangulation is ob-
tained from some height 1 triangulation by a single diagonal flip. Now consider
the left-most vertex in the first row, and apply single diagonal flip along each of
the remaining distinguished diagonals, in the order of increasing indices of the di-
agonals. Then move on to the next vertex in the first row, repeat the same process
and place the new vertices in the second row right next to the already existing ver-
tices. It is clear that one can apply the same process for each of the vertices in the
first row, with the caveat that some height 2 triangulation may be obtained from
two distinct height 1 triangulations. To avoid repetitions, we employ the follow-
ing rule: if a height 2 triangulation already appears in the second row, we do not
insert a new vertex if the same triangulation can be obtained from another height 1
triangulation. For example, the triangulation ∆((2, 1, 4, 1, 2)) of height 2 in Figure 3
can be obtained either from the triangulation ∆((2, 1, 3, 2, 1)) or the triangulation
∆((1, 2, 3, 1, 2)).
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1 1

2 2

2

e1

1,3
e 2,3
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e
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e
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1
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1
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FIGURE 3. The graded, directed, rooted, connected graph G5 of the
triangulations of the hexagon.

Now we explain how to insert edges between height 1 and height 2 vertices. If a
height 2 triangulation is obtained by a diagonal flip along a distinguished diagonal
dj from a height 1 triangulation which is the end point of some edge ei (where we
necessarily have i 6= j), then we insert an edge, denoted ei,j , to connect the height
1 triangulation to the height 2 triangulation.

It should be clear that this procedure can be iterated until there are no more
distinguished diagonals to be flipped, so that in the rth row, we have all the height
r triangulations of Pk+1, without any repetitions. We orient every edge so that the
height of the end point is one higher than the height of the source. Moreover, each
vertex of height r ≥ 1 in Gk has at least one incoming edge and exactly k − r − 2
outgoing edges. Note that some edges might have multiple names. For example
the edge e1,3,2 is the same as the edge e3,1,2 in Figure 3.
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To finish the proof, we need to show that every triangulation ∆ ∈ T (Pk+1) ap-
pears once in Gk and that Gk is connected. This follows from Lemma 24 below. �

Lemma 24. Let ∆(n) be a triangulation of Pk+1 and suppose that ht(n) = s. Then there
is a one-to-one correspondence between blowdown sequences

n = n
0 → n

1 → · · · → n
s = uk−s,

where each blowdown is at an interior 1, and paths

∆(uk) = ∆(n0),∆(n1), . . . ,∆(ns) = ∆(n)

in Gk starting at the root vertex ∆(uk) and ending at ∆(n).

Proof. The first blowdown n0 → n1 at an interior 1 of n0 corresponds geometrically
to peeling off from ∆(n) a triangle, called τ1, that has two edges along the boundary
of Pk+1 meeting at a vertex of Pk+1, which corresponds to the interior 1 that we
blow down. Let di1 be the distinguished diagonal of Pk+1 connecting this vertex to
the distinguished vertex of Pk+1. Note that there is a unique quadrilateral in Pk+1,
whose non-distinguished vertices are precisely the vertices of τ1, and the interior
edge of τ1 is dual (see Remark 19) to di1 in that quadrilateral, so that the interior

edge of τ1 is denoted by d̃i1 .
Since we peeled off τ1 from Pk+1 corresponding to the first blowdown n0 → n1,

the remaining polygon can be identified with Pk, which is embedded in Pk+1. The
second blowdown n1 → n2 at an interior 1 of n1 corresponds geometrically to peel-
ing off from ∆(n1) a triangle, called τ2, that has two edges along the boundary of Pk

meeting at a vertex of Pk, which corresponds to the interior 1 that we blow down.
The distinguished diagonal of Pk connecting this vertex to the distinguished ver-
tex of Pk is also a distinguished diagonal of Pk+1 by the embedding of Pk into
Pk+1. We label this distinguished diagonal of Pk+1 as di2 . Moreover, there is a
unique quadrilateral in Pk ⊂ Pk+1, whose non-distinguished vertices are precisely
the vertices of τ2, where the interior edge of τ2 is dual to di2 in that quadrilateral,

so that the interior edge of τ2 is denoted by d̃i2 .
Continuing in this way, until we arrive at ns = uk−s, we obtain a sequence of

triangles τ1, τ2, . . . , τs in ∆(n) and a sequence of diagonals di1, di2 , . . . , dis of Pk+1. It
follows by our construction that flipping the diagonals of the initial triangulation
∆(uk) ∈ T (Pk+1) in the order di1, di2, . . . , dis gives precisely the triangulation ∆(n).

It is easy to see that this process can be reversed. Namely, any path starting
from the root vertex of Gk and ending at a vertex ∆(n) is uniquely specified by a
sequence of distinguished diagonals of Pk+1, and this sequence of diagonals via
the canonically associated sequence of triangles specifies a unique blowdown se-
quence starting at n and ending at uk−s. �
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Example 25. We illustrate the proof of Lemma 24 for n = (3, 2, 1, 4, 2, 1, 4) ∈ Z7. Let
∆(n) ∈ G7 be the corresponding triangulation of the octagon depicted in Figure 4.
We observe that ht(n) = 5 by Lemma 15 and take the blowdown sequence

n = (3, 2, 1, 4, 2, 1, 4) → n1 = (3, 1, 3, 2, 1, 4) → n2 = (2, 2, 2, 1, 4) →

n3 = (2, 2, 1, 3) → n4 = (2, 1, 2) → n5 = (1, 1) = u2,

which we depicted geometrically in the top row of Figure 5, by peeling off the
triangles τ1, τ2, . . . , τ5 in order. The corresponding path

∆(n0) = ∆(u7) = ∆((1, 2, 2, 2, 2, 2, 1)),∆(n1) = ∆((1, 3, 1, 3, 2, 2, 1)),

∆(n2) = ∆((2, 2, 1, 4, 2, 2, 1)),∆(n3) = ∆((2, 2, 1, 4, 3, 1, 2)),

∆(n4) = ∆((2, 2, 1, 5, 2, 1, 3)),∆(n5) = ∆(n)

of vertices of G7 is depicted in the bottom row of Figure 5.

4

1

2

4

1

2

3

FIGURE 4. The triangulation ∆((3, 2, 1, 4, 2, 1, 4)) of the octagon.

d2
d1 d5 d4 d3

τ1 τ2 τ3 τ4 τ5

d̃2

d̃1 d̃5 d̃4 d̃3

flip d2 flip d1 flip d5 flip d4 flip d3

FIGURE 5. Peeling off triangles and flipping diagonals.
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Note that in this example, there are six distinct blowdown sequences starting
from n = (3, 2, 1, 4, 2, 1, 4) and ending with u2, which is equivalent to the fact that
there are six distinct paths in the graph G7 from the root vertex ∆(u7) to the vertex
∆(n).

4. FLIPPING CONTIGUOUSLY AND RIEMENSCHNEIDER’S POINT DIAGRAMS

Definition 26. Suppose that p > q ≥ 1 are coprime integers and let p

p−q
= [b1, b2, . . . , bk]

be the Hirzebruch-Jung continued fraction expansion, where bi ≥ 2 for 1 ≤ i ≤ k. We set

HJ( p

p−q
) = (b1, b2, . . . , bk).

Note that the k-tuple (b1, b2, . . . , bk) of integers is uniquely determined by the
pair (p, q). Similarly, if p

q
= [a1, a2, . . . , ar], then we set HJ(p

q
) = (a1, a2, . . . , ar).

There is a duality between HJ( p

p−q
) = (b1, b2, . . . , bk), and HJ(p

q
) = (a1, a2, . . . , ar)

obtained by using the Riemenschneider’s point diagram method [17]: place in the ith
row bi − 1 dots, the first one under the last one of the (i− 1)st row; then column j
contains aj − 1 dots. Using this method, one can compute HJ( p

p−q
) from HJ(p

q
) and

vice-versa. See Figure 7, for an example of the Riemenschneider’s point diagram
method.

Definition 27. Suppose that

∆(n0)
di1−→
flip

∆(n1)
di2−→
flip

∆(n2) → · · · → ∆(nr−1)
dir−→
flip

∆(nr)

is a path in Gk, where di1, di2, . . . , dir is the corresponding sequence of distinguished diag-
onals of Pk+1 that are flipped along the edges of this path. We say that di1 , di2, . . . , dir is a
contiguous sequence of distinguished diagonals in the triangulation ∆(n0) if any succes-
sive pair dij+1

, dij+2
bound a triangle in ∆(nj) for 0 ≤ j ≤ r − 2. We also say that ∆(n0),

∆(n1), . . ., ∆(nr) is a contiguous path in Gk.

Example 28. In Figure 6, we depicted a contiguous path in G9, starting from the
initial triangulation ∆(u9) and ending with ∆(2, 2, 2, 4, 2, 1, 3, 2, 5) obtained by flip-
ping along the contiguous sequence d5, d4, d6, d7, d3, d2, d1 of distinguished diago-
nals in the initial triangulation of the decagon.

Remark 29. In Example 25, the sequence d2, d1, d5, d4, d3 of distinguished diagonals
is not contiguous in ∆(u7), since the pair d1, d5 do not bound a triangle in ∆(n1).

Lemma 30. Fix an integer k ≥ 3 and let n ∈ Zk so that ht(n) ≥ 1. Then the following
are equivalent:

(1) there is a contiguous path from ∆(uk) to ∆(n) in Gk

(2) dpt(n) = 1
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FIGURE 6. Flips along a contiguous sequence d5, d4, d6, d7, d3, d2, d1
of distinguished diagonals in the initial triangulation of the decagon.

(3) there is a unique path from ∆(uk) to ∆(n) in Gk

Proof. Suppose that n ∈ Zk such that ht(n) = s ≥ 1.

(1) ⇒ (2) Suppose that there is a contiguous path

∆(uk) = ∆(n0)
di1−→
flip

∆(n1)
di2−→
flip

∆(n2) → · · · → ∆(ns−1)
dis−→
flip

∆(ns) = ∆(n)

in Gk, where di1, . . . , dis is a contiguous sequence of distinguished diagonals of
∆(uk). We would like to show that dpt(n) = 1. First of all, in the triangulation
∆(n1), obtained from ∆(uk) by the diagonal flip along di1 , there is a unique trian-

gle τ1 whose only interior edge is d̃i1 . It follows that dpt(n1) = 1. Now if we peel
away τ1 from ∆(n1), the result is identical to the initial triangulation ∆(uk−1) of Pk

and di2 , . . ., dis is a contiguous sequence of distinguished diagonals of ∆(uk−1). By
a straightforward inductive argument and pasting the triangle τ1 back we see that
dpt(n) = 1. Namely, n has exactly one interior component that is equal to 1.

(2) ⇒ (3) Suppose that dpt(n) = 1, which, by definition, means that n has ex-
actly one interior component that is equal to 1. By blowing down successively the
unique interior 1 at each step, we get a blowdown sequence

n = n0 → n1 → · · · → ns = uk−s.



RATIONAL BLOWDOWN GRAPHS FOR SYMPLECTIC FILLINGS OF LENS SPACES 15

Then according to Lemma 24, there is a unique path

∆(uk) = ∆(n0),∆(n1), . . . ,∆(ns) = ∆(n)

in Gk, starting at the root vertex ∆(uk) and ending at ∆(n).
(3) ⇒ (1) Suppose that there is a unique path

∆(uk) = ∆(n0)
di1−→
flip

∆(n1)
di2−→
flip

∆(n2) → · · · → ∆(ns−1)
dis−→
flip

∆(ns) = ∆(n)

in Gk, where di1 , . . . , dis is a sequence of distinguished diagonals of ∆(uk). Then we
claim that di1 , . . . , dis must be a contiguous sequence of distinguished diagonals in
∆(n). Indeed if dij and dij+1

were not adjacent for some j, then we could find an
alternate path from ∆(uk) to ∆(n) in Gk by interchanging the order in which we
flip dij and dij+1

, contradicting the uniqueness of the path between ∆(uk) to ∆(n)
in Gk. �

Lemma 31. Fix an integer k ≥ 3 and let n, n′ ∈ Zk. Suppose that there exists a unique
path from ∆(n) to ∆(n′) in Gk. Then dpt(n′)− dpt(n) ≤ 1.

Proof. Let n,n′ ∈ Zk and suppose that there exists a unique path

∆(n) = ∆(n0)
di1−→
flip

∆(n1)
di2−→
flip

∆(n2) → · · · → ∆(nt−1)
dit−→
flip

∆(nt) = ∆(n′)

in Gk. Then this path is contiguous by the same argument given in the proof of
(3) ⇒ (1) in Lemma 30. Note that by the contiguity of the above path, we have
dpt(nj) = dpt(n1), for all 2 ≤ j ≤ t. It follows that dpt(n′) = dpt(n)+ 1 if dpt(n1) =
dpt(n0) + 1, and otherwise dpt(n′) = dpt(n). �

Definition 32. For any integer s ≥ 1, let Os denote the set of all s-tuples that can be
obtained from the 1-tuple (4) and applying the following iterations successively:

(a) Insert 2 as the first component and increase the last component by 1, or
(b) Insert 2 as the last component and increase the first component by 1.

We set O =
⋃

s≥1O
s.

Lemma 33. Fix an integer k ≥ 3 and let n ∈ Zk so that ht(n) = k − 2 and dpt(n) = 1.
Suppose that

∆(uk) = ∆(n0)
di1−→
flip

∆(n1)
di2−→
flip

∆(n2) → · · · → ∆(nk−3)
dik−2

−−−→
flip

∆(nk−2) = ∆(n)

is the unique contiguous path in Gk (as described in Lemma 30), where di1 , . . . , dik−2
is a

contiguous sequence of distinguished diagonals in ∆(uk). Let m denote the k-tuple having
1 in the position that n has a 1 and 0 elsewhere, and let 1 ≤ q < p be the unique coprime
integers such that HJ( p

p−q
) = n+m. Then HJ(p

q
) belongs to Ok−2 and moreover, it can be



16 MOHAN BHUPAL AND BURAK OZBAGCI

described by starting from the 1-tuple (4) and applying k − 3 iterations according to the
following rule:

(a) If ij < ij+1, then insert 2 as the first component and increase the last component
by 1, and

(b) If ij > ij+1, then insert 2 as the last component and increase the first component
by 1.

Remark 34. Because of the assumption ht(n) = ht(∆(n)) = k−2, the triangulation
∆(n) is obtained from uk by flipping all the distinguished diagonals in uk in some
order. It follows that if any component of the k-tuple n is equal to 1, it must be
an interior component. So, the condition dpt(n) = 1 is equivalent to the condition
that n has exactly one component that is equal to 1, which is in the interior of n.

Proof of Lemma 33. Let n ∈ Zk so that ht(n) = k − 2 and dpt(n) = 1. By Lemma 30,
there is a contiguous path

∆(uk) = ∆(n0)
di1−→
flip

∆(n1)
di2−→
flip

∆(n2) → · · · → ∆(nk−3)
dik−2

−−−→
flip

∆(nk−2) = ∆(n)

in Gk, where di1 , . . ., dik−2
is a contiguous sequence of distinguished diagonals in

∆(uk). Since we flip all the distinguished diagonals of ∆(uk) contiguously to obtain
∆(n), the last distinguished diagonal that is flipped must be either d1 or dk−2. In
Example 28, for instance, the last distinguished diagonal that is flipped is d1 (see
Figure 6).

In the following, for ease of notation, we set n′ = nk−3. Note that ∆(n′) is ob-
tained from ∆(uk) by flipping the diagonals di1 , . . . , dik−3

, in order. Our proof nat-
urally splits into two possible cases.

Case A: Suppose that dik−2
= d1. In this case, we observe that dik−2

= d1 is
geometrically in the leftmost position. Now, we peel away from ∆(n′) the ”upper
left” triangle whose only interior edge is d1 and denote the resulting triangulation
of Pk as ∆(n′). Note that n′ has only one component that is equal to 1, which is in
the interior of n′, by the first assumption in the lemma. It follows that the k-tuple
n is obtained from the (k − 1)-tuple n′ by increasing the last component of n′ by 1
and inserting 2 at the beginning.

Let m denote the k-tuple having 1 in the position that n has a 1 and 0 elsewhere,
and similarly let m′ denote the (k − 1)-tuple having 1 in the position that n′ has
a 1 and 0 elsewhere. Let 1 ≤ q < p be the unique coprime integers such that
HJ( p

p−q
) = n + m, and similarly let 1 ≤ q′ < p′ be the unique coprime integers

such that HJ( p′

p′−q′
) = n′ + m′. It follows by the Riemenschneider’s point diagram

method that HJ(p
q
) is obtained from HJ(p

′

q′
) by inserting 2 at the end and increasing

the first component by 1.
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Case B: Suppose that dik−2
= dk−2. In this case, we observe that dik−2

= dk−2 is
geometrically in the rightmost position. Now, we peel away from ∆(n′) the ”upper
right” triangle whose only interior edge is dk−2 and denote the resulting triangula-
tion of Pk as ∆(n′). Note that n′ has only one component that is equal to 1, which
is in the interior of n′, by the first assumption in the lemma. It follows that the
k-tuple n is obtained from the (k− 1)-tuple n′ by increasing the first component of
n′ by 1 and inserting 2 at the end.

Let m denote the k-tuple having 1 in the position that n has a 1 and 0 elsewhere,
and similarly let m′ denote the (k − 1)-tuple having 1 in the position that n′ has
a 1 and 0 elsewhere. Let 1 ≤ q < p be the unique coprime integers such that
HJ( p

p−q
) = n + m, and similarly let 1 ≤ q′ < p′ be the unique coprime integers

such that HJ( p′

p′−q′
) = n′ + m′. It follows by the Riemenschneider’s point diagram

method that HJ(p
q
) is obtained from the HJ(p

′

q′
) by inserting 2 at the beginning and

increasing the last component by 1.
The proof will be completed by an easy inductive argument. For the initial step

of the induction, consider the case k = 3. In this case, by flipping the unique distin-
guished diagonal of the quadrilateral, we obtain ∆(2, 1, 2) from the initial triangu-
lation ∆(1, 2, 1). In this case, n = (2, 1, 2), n+m = (2, 2, 2) and hence HJ(p

q
) = (4). It

should be clear that Case A provides the inductive step corresponding to iteration
(a), whereas Case B provides the inductive step corresponding to iteration (b). �

Example 35. In Example 28, we obtained ∆(2, 2, 2, 4, 2, 1, 3, 2, 5) from the initial
triangulation ∆(u9) by applying flips along the contiguous sequence d5, d4, d6, d7,
d3, d2, d1 of distinguished diagonals of the initial triangulation of the decagon. If
we run the algorithm in Lemma 33, based on the sequence d5, d4, d6, d7, d3, d2,
d1 we get (4), (5, 2), (2, 5, 3), (2, 2, 5, 4), (3, 2, 5, 4, 2), (4, 2, 5, 4, 2, 2), (5, 2, 5, 4, 2, 2, 2).
Therefore we conclude that, if HJ( p

p−q
) = (2, 2, 2, 4, 2, 2, 3, 2, 5), then HJ(p

q
) must be

equal to (5, 2, 5, 4, 2, 2, 2), which can indeed be verified by the Riemenschneider’s
point diagram method as illustrated in Figure 7.

Remark 36. In Lemma 33, we assumed that n is of maximal height, and minimum
positive depth, i.e., ht(n) = k − 2 and dpt(n) = 1. In fact, we could formulate a
similar result if n is of arbitrary positive height, say 1 ≤ s ≤ k − 2 and minimum
positive depth, as follows. The assumptions dpt(n) = 1 and ht(n) = s implies that
there is a unique contiguous path of length s from the root vertex ∆(uk) to ∆(n)
in the graph Gk, by Lemma 30. Since the path is contiguous, we can peel away the
irrelevant triangles form each of the triangulations in this path, to get a new path of
the same length in Gs+2, which starts from ∆(us+2) and ends with a triangulation of
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FIGURE 7. Riemenschneider’s point diagram method.

maximal possible height and minimum positive depth. Then we apply Lemma 33
to this contiguous path in Gs+2.

Example 37. Here we give an example to illustrate Remark 36. Consider the trian-
gulation ∆((2, 2, 1, 4, 1)) of the hexagon in the graph G5 depicted in Figure 3. The
root vertex ∆(u5) is connected to the vertex ∆((2, 2, 1, 4, 1)) by the unique contigu-
ous path

∆(u5)
d2−→
flip

∆((1, 3, 1, 3, 1))
d1−→
flip

∆((2, 2, 1, 4, 1))

of length 2, obtained by concatenating the edges e1 and e2,1. Now, by removing the
”top right” triangle from each of the triangulations in this path, we obtain a new
path

∆(u4)
d2−→
flip

∆((1, 3, 1, 2))
d1−→
flip

∆((2, 2, 1, 3))

of maximal possible length in the graph G4. Note that

dpt((2, 2, 1, 4, 1)) = dpt(((2, 2, 1, 3)) = 1,

and hence Lemma 33 can be applied to this new path in G4. So, if HJ( p

p−q
) =

(2, 2, 2, 3), then HJ(p
q
) = (5, 2) which indeed belongs to O2 and (5, 2) is obtained

from (4) by the iteration of type (b).

5. CONTIGUOUS SEQUENCES OF DIAGONAL FLIPS AND RATIONAL BLOWDOWNS

In this section, our goal is to prove Theorem 1, which essentially organizes the
symplectic deformation equivalence classes of all minimal symplectic fillings of
the contact lens space (L(p, q), ξcan) as a graded, directed, rooted, connected graph,
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where the root is the minimal resolution of the corresponding cyclic quotient sin-
gularity and each directed edge is a symplectic rational blowdown along a linear
plumbing graph.

A rational blowdown is the surgery operation which replaces the neighborhood
of a configuration of spheres in a smooth 4-manifold intersecting according to
some connected plumbing graph, by a rational homology ball having the same ori-
ented boundary. Each vertex in a plumbing graph represents a disk bundle over
the sphere and is decorated by the Euler number of the bundle, which is called the
weight of the vertex.

Proposition 38 (Wahl [21], Looijenga-Wahl [13]). A linear plumbing graph can be ra-
tionally blown down if and only if the weights of its vertices are exactly given by taking the
negatives of the entries in the Hirzebruch-Jung continued fraction expansion of s2/(sh−1)
for some pair of coprime integers (s, h) with 1 ≤ h < s. More explicitly, the family of lin-
ear plumbing graphs that can be rationally blown down is obtained from the initial graph
with one vertex whose weight is −4, and applying the following iterations: If the linear
plumbing graph with weights −a1, . . . ,−ar is in this family so are the linear plumbing
graphs with weights

(I) −2,−a1, . . . ,−ar−1,−(ar + 1) and
(II) −(a1 + 1),−a2, . . . ,−ar,−2.

In the context of 4-manifolds, the rational blowdowns along linear plumbing
graphs, were first used by Fintushel and Stern [8] for the case h = 1, and by Park
[16] for the general case. From the singularity theory point of view, each of these
linear plumbing graphs is the dual minimal resolution graph of some cyclic quo-
tient singularity of class T0 (a.k.a. Wahl singularity), which is a subclass of singular-
ity of class T (see [11]).

Moreover, Symington ([19, 20]) established that the rational blowdown surgery
preserves a symplectic structure if the original spheres are symplectic surfaces in a
symplectic 4-manifold.

Next we recall some definitions which will be used in the proof of Theorem 1
below. For any n = (n1, . . . , nk) ∈ Zk, let N(n) denote the result of Dehn surgery
on the framed link which consists of the chain of k unknots in S3 with framings
n1, n2, . . . , nk, respectively. It follows easily that the 3-manifold N(n) is diffeomor-

phic to S1 × S2. Let m = (m1, . . . , mk) ∈ Z
k, and L =

⋃k

i=1 Li denote the framed
link in N(n), in the complement of the chain of k unknots, where each Li consists
of |mi| components as depicted in Figure 8, with the components having framings
−1 if mi > 0 and framings +1 if mi < 0.
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n1 n2 nk−1 nk

|m1| |m2| |mk−1| |mk|

FIGURE 8. The relative handlebody description of the oriented
smooth 4-manifold W (n,m).

Definition 39. For any n = (n1, . . . , nk) ∈ Zk, and m = (m1, . . . , mk) ∈ Z
k, the

oriented smooth 4-manifold W (n,m) is obtained by attaching 2-handles to S1 ×D3 along
the framed link ϕ(L) ⊂ S1 × S2 for some diffeomorphism ϕ : N(n) → S1 × S2.

Note that this description, which is independent of the choice of ϕ since any
self-diffeomorphism of S1×S2 extends to S1×D3, is a relative handlebody decom-
position of W (n,m).

Definition 40. Let b = (b1, . . . , bk) = HJ( p

p−q
), where p

p−q
= [b1, b2, . . . , bk]. For any

n ∈ Zk, we set Wp,q(n) = W (n, b-n).

According to Lisca’s classification [12], any minimal symplectic filling of the con-
tact 3-manifold (L(p, q), ξcan) is orientation-preserving diffeomorphic toWp,q(n) for
some n ∈ Zk(

p

p−q
), and the symplectic structure on Wp,q(n) is unique up to sym-

plectic deformation equivalence [1].

Remark 41. Fix an integer k ≥ 3 and let n ∈ Zk such that exactly one component of
n equals to 1, which is in the interior of n. Let m denote the k-tuple having 1 in the
position that n has a 1 and 0 elsewhere, and let 1 ≤ q < p be the unique coprime
integers such that HJ( p

p−q
) = n + m. We proved in [2] that the minimal symplectic

filling Wp,q(n) of (L(p, q), ξcan) is a rational homology 4-ball and thus Wp,q(n) can
be obtained from the canonical symplectic filling Wp,q(uk) by a single symplectic
rational blowdown along a linear plumbing graph. Moreover, the weights of the
linear plumbing graph are given by the negatives of the components of HJ(p

q
).

We are now ready to give a proof of Theorem 1.

Proof of Theorem 1. Suppose that p > q ≥ 1 are coprime integers and let p

p−q
=

[b1, b2, . . . , bk] be the Hirzebruch-Jung continued fraction expansion, where bi ≥ 2
for 1 ≤ i ≤ k.
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We will construct a graded, directed, rooted, connected graph Gp,q

k satisfying
items (1) to (4) in Theorem 1 using the graded, directed, rooted, connected graph
Gk. Note that the root of Gk is the initial triangulation ∆⋆ = ∆(uk), and Wp,q(uk) is
the minimal resolution, which is the canonical symplectic filling of (L(p, q), ξcan).
We take ∆⋆ as the root of Gp,q

k . Each vertex of Gk can be identified with an element of
T (Pk+1) and Stevens’ bijection Φk identifies T (Pk+1) with the set Zk. Moreover, the
symplectic deformation classes of all minimal symplectic fillings of the contact 3-
manifold (L(p, q), ξcan) is parametrized by the subset Zk(

p

p−q
) of Zk or, equivalently,

by the subset T p,q(Pk+1) of T (Pk+1). So, to obtain the vertices of Gp,q

k , we just take
the vertices of Gk which belong to T p,q(Pk+1) and “skip” the others. So far, our
graph Gp,q

k satisfies items (1) and (2) in Theorem 1.
We now turn our attention to item (3). Each edge in the graph Gp,q

k is obtained
by the concatenation of some edges in Gk according to the following principle:

Suppose that ∆(n) and ∆(n′) are two vertices in the graph Gp,q

k . A path of directed edges
in Gk from ∆(n) to ∆(n′) are concatenated into a single directed edge in Gp,q

k if and only if
there is a unique path from ∆(n) to ∆(n′) in Gk.

We check that with this convention, if there is a directed edge from ∆(n) to ∆(n′)
in Gp,q

k , then the minimal symplectic filling Wp,q(n
′) can be obtained from the mini-

mal symplectic fillingWp,q(n) by a single rational blowdown along a linear plumb-
ing graph. So suppose that ∆(n) is connected to ∆(n′) by a unique path in Gk. Let
n = n0,n1, . . . ,nr = n′ be the sequence of k-tuples corresponding to the vertices
in this path, and let di1 , di2, . . . , dir be the corresponding sequence of distinguished
diagonals of Pk+1 that are flipped along the edges, as illustrated below:

∆(n) = ∆(n0)
di1−→
flip

∆(n1)
di2−→
flip

∆(n2) → · · · → ∆(nr−1)
dir−→
flip

∆(nr) = ∆(n′).

We claim that di1, di2, . . . , dir is a contiguous sequence of distinguished diagonals
in the triangulation ∆(n). To see this, note that each pair of successive distin-
guished diagonals dij , dij+1

that are flipped must be adjacent in the sense each such
pair of diagonals must bound a triangle in ∆(nj−1). Indeed if dij and dij+1

were not
adjacent then we could find an alternate path from ∆(n) to ∆(n′) in Gk by inter-
changing the order in which we flip dij and dij+1

, contradicting the uniqueness of
the path between ∆(n) to ∆(n′) in Gk. Let Kr = {di1, di2, . . . , dir} and peel away all
triangles from ∆(n) that do not have an edge in the set Kr. This will transform the
polygon Pk+1 into an (r + 3)-gon Pr+3.

Moreover, the triangulation ∆(n) of Pk+1 will become the initial triangulation
∆(ur+2) of Pr+3 and the contiguous sequence di1, di2, . . . , dir of distinguished di-
agonals in ∆(n) will become a contiguous sequence of distinguished diagonals of
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∆(ur+2). Let ur+2 = n0,n1, . . . ,nr be the sequence of (r + 2)-tuples correspond-
ing to the sequence of triangulations of Pr+3 obtained from the triangulations
∆(n0),∆(n1), . . . ,∆(nr) of Pk+1 by peeling away the same set of triangles as above.
By Lemma 33, it follows that (r+2)-tuple nr will have exactly one component that
is equal to 1, which is in the interior of nr. We illustrated this step of the proof in
Example 42 below.

Let mr be the (r+2)-tuple having 1 in the position that nr has a 1 and 0 elsewhere,

and let br = mr + nr. Let p′ and q′ be the coprime integers with 1 ≤ q′ < p′

such that HJ( p′

p′−q′
) = br. According to Remark 41, the minimal symplectic filling

W (nr,mr) = Wp′,q′(nr) of (L(p′, q′), ξcan) is a rational homology ball and moreover,

it is obtained from the canonical symplectic fillingW (ur+2,br−ur+2) =Wp′,q′(ur+2)
of (L(p′, q′), ξcan) by a single rational blowdown along a linear plumbing graph.
Moreover, the weights of the linear plumbing graph are given by the negatives of

the components in HJ(p
′

q′
).

Since the triangulation ∆(ni) of Pk+1 is obtained from the triangulation ∆(ni) of
Pr+3 by pasting on the collection of triangles we peeled away in the first place, it
follows that the fibre of the planar Lefschetz fibration on W (ni,mi), where mi =

br − ni, is canonically embedded in the fibre of the planar Lefschetz fibration on
Wp,q(ni) = W (ni,b − ni). Moreover, the monodromy of the planar Lefschetz fi-
bration on W (ni,mi) is contained as a subword in the monodromy of the pla-
nar Lefschetz fibration on Wp,q(ni). It follows that the minimal symplectic filling
Wp,q(n

′) = Wp,q(nr) = W (nr,b − nr) can be obtained from the minimal symplectic
filling Wp,q(n) = Wp,q(n0) = W (n0,b − n0) by a single rational blowdown along a
linear plumbing graph as claimed.

Finally, to prove the claim in item (4), rather than computing the second Betti
number of the minimal symplectic filling Wp,q(n) directly, we compute instead the
Milnor number of the Milnor fibre, which corresponds to the same parameter n.
Denoting the Milnor fibre as Wp,q(n), by a slight abuse of notation, we recall the
simple formula for the Milnor number

µ(Wp,q(n)) = r + 2(k − 1)− |n|

of Wp,q(n), where r is the length of the Hirzebruch-Jung continued fraction expan-
sion of p

q
and |n| = n1+ · · ·+nk. For the formula of the Milnor number, we refer the

reader to [14, Theorem 7.7] and references therein. Since we fix the pair (p, q) from
the beginning of the proof, r and k are fixed and hence µ(Wp,q(n)) only depends on
|n|. But it is easy to see (as in the proof of Lemma 21) that |n| increases by one after
applying a diagonal flip along a distinguished diagonal, and thus µ(Wp,q(n)) drops
by one. Therefore, if the grading of each vertex of the graph Gp,q

k is defined as the
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second Betti number of the corresponding minimal symplectic filling, then each
directed edge drops the grading by the number of diagonal flips used to obtain
that edge as described above. We also note that µ(Wp,q(n)) = r − ht(n), where ht
is the height function described in Definition 13. See Remark 45, for an alternative
direct proof of item (4). �

Example 42. We illustrate a crucial step in the proof of Theorem 1 by the following
example. Consider the path

∆(n) = ∆((1, 2, 2, 4, 2, 1, 3, 3, 1))
d7−→
flip

∆(n1) = ∆((1, 2, 2, 5, 2, 1, 3, 2, 2))
d3−→
flip

∆(n2) = ∆((1, 2, 3, 4, 2, 1, 3, 2, 3))
d2−→
flip

∆(n3) = ∆((1, 3, 2, 4, 2, 1, 3, 2, 4))

of triangulations of the decagon as depicted at the top row in Figure 9. In this
example, the set K3 mentioned in the proof of Theorem 1, consists of the contiguous
sequence d7, d3, d2 of distinguished diagonals in the triangulation ∆(n). By peeling
away all triangles from ∆(n) that do not have an edge in the set K3, we obtain
the initial triangulation ∆(u5) of the hexagon, as depicted at the beginning of the
bottom row in Figure 9.
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FIGURE 9. Top row: ∆(n), ∆(n1), ∆(n2), ∆(n3). Bottom row: ∆(n),
∆(n1), ∆(n2), ∆(n3).

Moreover, by peeling away the same triangles form each of the triangulations
∆(n), ∆(n1), ∆(n2), ∆(n3) of the decagon depicted at the top row, we obtain the
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path of triangulations

∆(n) = ∆(u5)
d3−→
flip

∆(n1) = ∆((1, 2, 3, 1, 2))
d2−→
flip

∆(n2) = ∆((1, 3, 2, 1, 3))
d1−→
flip

n3 = ∆((2, 2, 2, 1, 4))

of the hexagon depicted in the bottom row in Figure 9. Here, we used overline
for the distinguished diagonals of the hexagon to set them apart from the distin-
guished diagonals of the decagon. It should be clear that the contiguous sequence
d7, d3, d2 of distinguished diagonals of ∆(n) can be identified with the the contigu-

ous sequence d3, d2, d1 of distinguished diagonals of ∆(n) = ∆(u5). Note that n3

has exactly one component that is equal to 1, which is in the interior of n3. We
emphasize that the interior 1 in n3 is obtained by the diagonal flip along the dis-

tinguished diagonal d3 of the hexagon, which is applied first in the sequence of
diagonal flips in the bottom row of triangulations in Figure 9.

Proposition 43. Suppose that there is a directed edge from some vertex ∆(n) to another
vertex ∆(n′) in Gp,q

k which is obtained by the unique contiguous path in Gk corresponding
to the sequence of diagonal flips along the distinguished diagonals di1, . . . , dir . Then the
linear plumbing graph for the rational blowdown represented by this edge is obtained by
starting from the initial graph with one vertex whose weight is −4 and applying the iter-
ations in Proposition 38 according to the following rule: If ij < ij+1, then apply iteration
(I), otherwise apply iteration (II).

Proof. Using the same argument (and notation) as in the proof of Theorem 1, we
see that the linear plumbing graph used for the rational blowdown that yields
the minimal symplectic filling Wp,q(n) from the minimal symplectic filling Wp,q(n

′)
is the same as the linear plumbing graph used for the rational blowdown that
yields the minimal symplectic filling Wp′,q′(nr) from the canonical symplectic fill-
ing Wp′,q′(ur+2). Note that the triangulation ∆(nr) of Pr+3 is obtained from the
initial triangulation ∆(ur+2) by flipping all the distinguished diagonals in ∆(ur+2)
contiguously. As a consequence, the proof of Proposition 43 reduces to Lemma 33.

�

6. DIAGONAL FLIPS AND LANTERN SUBSTITUTIONS

Suppose p and q are coprime integers with p > q ≥ 1 such that the Hirzebruch-
Jung continued fraction expansion of p

p−q
is equal to [b1, . . . , bk], where bi ≥ 2 for

all 1 ≤ i ≤ k. In [2], we constructed a planar Lefschetz fibration on each minimal
symplectic filling of the contact 3-manifold (L(p, q), ξcan). In particular, there is a
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Lefschetz fibration on the minimal resolution, whose fibre is the disk Dk with k-
holes and whose monodromy is the composition of Dehn twists along an explicit
set of disjoint curves in Dk. We would like to point out that the planar Lefschetz
fibration constructed by Gay and Mark [9] on the minimal resolution using its dual
plumbing graph agrees with ours.

Moreover, the planar Lefschetz fibration above naturally induces a planar open
book OBp,q on L(p, q) which supports ξcan. It follows by a general result of Wendl
[22], that each minimal symplectic filling of (L(p, q), ξcan) has a planar Lefschetz
fibration whose monodromy is a positive factorization of the monodromy of OBp,q,
although we have not relied on his result in [2].

Furthermore, in [2, Theorem 4.1], we showed that each minimal symplectic
filling of the contact 3-manifold (L(p, q), ξcan) can be obtained from the minimal
resolution by a sequence of rational blowdowns along linear plumbing graphs.
We observe here that the proof of Lemma 4.5 in [2], coupled with Lemma 21 of
the present paper, implies in particular that if ∆(ñ) ∈ T (Pk+1) is obtained from
∆(n) ∈ T (Pk+1) by a diagonal flip, then the monodromy of the possibly achiral
planar Lefschetz fibration on Wp,q(n) can be obtained from the monodromy of the
possibly achiral planar Lefschetz fibration on Wp,q(ñ) by single lantern substitution
together with, possibly, the introduction or removal of some cancelling pairs of
Dehn twists.

The reader might be puzzled at this point at why we allow achiral Lefschetz
fibrations in this discussion, but the point is that we can go from a positive factor-
ization of some fixed monodromy to another positive factorization by a sequence
of lantern substitutions which destroys positivity at the intermediate steps but re-
stores it at the end.

As a matter of fact, the lantern substitution is completely determined by the
diagonal flip, which we discuss below. The following definition is needed in our
discussion.

Definition 44. Let Dk denote the disk with k-holes. Suppose that the holes in Dk are
aligned horizontally and enumerated from left to right. For each 1 ≤ r ≤ k, let γr denote
the convex curve enclosing the first r holes and for any 2 ≤ s ≤ t ≤ k, let δs,t denote the
convex curve enclosing the holes labelled from s to t.

The diagonal flip along any distinguished diagonal in any given triangulation
∆(n) of Pk+1 transforms ∆(n) to another triangulation ∆(ñ) of Pk+1, so that for
exactly two indices, say i < j, we have ñi − ni = ñj − nj = 1 and for one index,
say t, where i < t < j, we have ñt − nt = −1. This is simply because each di-
agonal flip is an exchange of a distinguished diagonal with a non-distinguished
diagonal of a quadrilateral, one of whose vertices is the distinguished vertex. The
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corresponding lantern substitution in the monodromy factorization of the planar
Lefschetz fibration on Wp,q(n), in order to obtain the monodromy factorization of
the planar Lefschetz fibration on Wp,q(ñ), is the replacement of the product of four
Dehn twists

D(γi) ◦D(δi+1,t) ◦D(δt+1,j) ◦D(γj)

with the product of three Dehn twists

D(βi,t,j) ◦D(γt) ◦D(δi+1,j),

up to cyclic permutations, where βi,t,j is depicted in Figure 10.

1 i

i+ 1 t

t+ 1 j

j + 1 k

βi,t,j Dk

FIGURE 10. The curve βi,t,j in Dk.

Note that if both n and ñ belong to Zk(
p

p−q
), thenWp,q(n) and Wp,q(ñ) both repre-

sent minimal symplectic fillings and there is no need to insert any cancelling pair
of Dehn twists to apply the lantern substitution. If n ∈ Zk(

p

p−q
), but ñ /∈ Zk(

p

p−q
),

then to apply the lantern substitution, one needs to insert a cancelling pair of Dehn
twists along γi if ñi > bi, and a cancelling pair of Dehn twists along γj if ñj > bj .
In certain cases, both conditions are satisfied and we need to insert two cancelling
pairs of Dehn twists. It is also possible that neither n nor ñ belongs to Zk(

p

p−q
),

in which case, one again inserts a cancelling pair of Dehn twists along γi or γj , or
both, with the same criterion as above.

The upshot of this discussion is that, once the coprime pair (p, q) is fixed, each
vertex in the graph Gk is a certain (not necessarily positive) factorization of the
fixed monodromy of the planar open book OBp,q on L(p, q) which supports ξcan. It
follows that, each vertex of Gk can be identified with a ”smooth filling” Wp,q(n) of
L(p, q), for the corresponding n ∈ Zk. Moreover, Wp,q(n) is a minimal symplectic
filling of (L(p, q), ξcan) if and only if the corresponding factorization is positive, or
equivalently, if and only if n ∈ Zk(

p

p−q
).

Remark 45. An alternative proof of item (4) in Theorem 1, which says that the Mil-
nor number drops by one after each diagonal flip, in the spirit of the present paper,
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can be given as follows. By construction, each diagonal flip is a lantern substitu-
tion in the monodromy of the corresponding planar Lefschetz fibration. By the
work of Endo and Nagami [7], the signature σ(Wp,q(n)) = b+2 (Wp,q(n))− b

−
2 (Wp,q(n)

increases by one when a lantern substitution is applied, and hence µ(Wp,q(n)) =
b+2 (Wp,q(n)) + b−2 (Wp,q(n)) drops by one since b+2 (Wp,q(n)) remains fixed.

7. RATIONAL BLOWDOWN DEPTH OF A MINIMAL SYMPLECTIC FILLING

Our goal in this section is to prove Proposition 5 from the Introduction. Recall
that a minimal symplectic filling of (L(p, q), ξcan) is said to have rational blowdown
depth r if the minimal number of successive symplectic rational blowdowns along
linear plumbing graphs needed to obtain the filling from the minimal resolution is
equal to r, where the depth of the minimal resolution is set to be zero. Moreover,
for k ≥ 3, the depth of n = (n1, . . . , nk) ∈ Zk, denoted by dpt(n), is the number of
1’s in the interior of n, i.e., dpt(n) is the cardinality of the set {i | 1 < i < k and ni =
1}.

Lemma 46. Suppose p and q are coprime integers with p > q ≥ 1. Let n be a k-tuple in
Zk(

p

p−q
) with dpt(n) = l ≥ 1, so that n has l interior 1’s enumerated from left to right.

Pick any interior 1, say the vth interior 1 for some 1 ≤ v ≤ l and blow down n = n0 at this
1, resulting in a (k − 1)-tuple by n1. If dpt(n1) = l, then blow down at the vth interior 1
again to obtain a (k − 2)-tuple n2. Repeat in this way until the (k − t)-tuple nt satisfies
dpt(nt) = l − 1. If

∆(uk) = ∆(n0),∆(n1), . . . ,∆(nt)

is the corresponding path in Gk obtained as in Lemma 24, then nt belongs to Zk(
p

p−q
).

Proof. Suppose that n is a k-tuple in Zk(
p

p−q
) such that dpt(n) = l, so that n has l

interior 1’s enumerated from left to right. Pick any interior 1, say the vth interior
1 for some 1 ≤ v ≤ l. Blow down n = n0 at this 1, and let τ1 denote the cor-
responding triangle in ∆(n) and di1 the corresponding distinguished diagonal of
Pk+1 as discussed in the proof of Lemma 24. Denote the resulting (k − 1)-tuple
by n1. Then n1 will have at most l interior 1’s. If n1 again has l interior 1’s, then
blow down at the vth interior 1 again to obtain a (k − 2)-tuple n2. Let τ2 denote
the corresponding triangle in ∆(n) and di2 the corresponding distinguished diag-
onal of Pk+1. Repeat in this way until we obtain a (k − t)-tuple nt with less than
l interior 1’s. Let τ1, τ2, . . . , τt and di1 , di2, . . . , dit denote the associated sequences
of triangles and diagonals, respectively. Then, as we blow down each time at se-

quentially the same interior 1, each pair of successive d̃ij ’s will be adjacent in the
sense that they bound a triangle in ∆(n). Let nt be the k-tuple that corresponds
to the triangulation obtained from the initial triangulation ∆(uk) by flipping the
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distinguished diagonals di1, di2, . . . , dit in order as in the proof of Lemma 24. Note
that di1, di2, . . . , dit is a contiguous sequence of distinguished diagonals in ∆(uk).

Let b be the k-tuple (b1, b2, . . . , bk), where p

p−q
= [b1, b2, . . . , bk] is the Hirzebruch-

Jung continued fraction expansion, with bi ≥ 2 for 1 ≤ i ≤ k. Since, by assumption,
n ∈ Zk(

p

p−q
) we know that n ≤ b. In the following we check that nt ≤ b, which

implies that nt ∈ Zk(
p

p−q
) as well.

First note that the two triangulations ∆(nt) and ∆(n) both contain all of the tri-
angles τ1, τ2, . . . , τt and hence coincide on the part of the polygon Pk+1 separated

from the distinguished vertex by the diagonal d̃it . Since the part of the triangu-

lation ∆(nt) remaining after cutting along d̃it is precisely the initial triangulation
∆(uk−t) of (k− t+1)-gon Pk−t+1, it follow immediately that each component of nt,
possibly with the exception of the two components corresponding to the boundary

vertices of of the diagonal d̃it , is less than or equal to the corresponding component
of the k-tuple b, since each component of n is less than or equal to the correspond-
ing component of b and each component of b is at least 2. To see that the two

components of nt corresponding to the boundary vertices of d̃it are also less than
or equal to the corresponding components of b, we argue as follows: Let ∆(nt)
denote the triangulation of the (k − t+ 1)-gon Pk−t+1 corresponding to the (k − t)-
tuple nt. This is a subtriangulation of ∆(n) given by cutting along the diagonal

d̃it . Note that if either of the two components of nt corresponding to the boundary

vertices of d̃it is an interior component, then it is greater than 1, since otherwise
nt would still have l interior 1’s, contrary to assumption. It follows that each of

the components of nt corresponding to the boundary vertices of d̃it is less than or
equal to the corresponding component of nt and hence less than or equal to the
corresponding component of b. �

Example 47. We illustrate the proof of Lemma 46 for n = (3, 1, 4, 3, 1, 2, 4, 1, 4) ∈ Z9.
It is clear that dpt(n) = 3 by definition. By blowing down n sequentially at the
middle 1 three times, we obtain the sequence

n = (3, 1, 4, 3, 1, 2, 4, 1, 4) → n1 = (3, 1, 4, 2, 1, 4, 1, 4) →

n2 = (3, 1, 4, 1, 3, 1, 4) → n3 = (3, 1, 3, 2, 1, 4).

We stopped at n3, since dpt(n3) = 2. The corresponding path

∆(u9) = ∆((1, 2, 2, 2, 2, 2, 2, 2, 1)),∆(n1) = ∆((1, 2, 2, 3, 1, 3, 2, 2, 1)),

∆(n2) = ∆((1, 2, 2, 4, 1, 2, 3, 2, 1)),∆(n3) = ∆((1, 2, 3, 3, 1, 2, 4, 2, 1)),

in G9 can be obtained as discussed in the proof of Lemma 24. In Figure 11, we de-
picted the triangulations ∆(n3) (on the left) and ∆(n) (on the right) of the decagon.
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We also highlighted the vertices of the diagonal d̃3 in the triangulation ∆(n3),
which play a crucial role in our proof of Lemma 46.

d̃4
d̃5

d̃3

d1

d2 d6

d7

τ1

τ2τ3

3

1

4

3

1

2

4

1
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1

2

4

2

1

FIGURE 11. Triangulations ∆(n3) and ∆(n) of the decagon.

When we cut the triangulation ∆(n3) along the diagonal d̃3, or equivalently peel
away the triangles τ1, τ2, τ3, the remaining subtriangulation (on the side of the dis-
tinguished vertex) is identical to the initial triangulation of P6. It follows that if
n ≤ b for some k-tuple b, with bi ≥ 2 for each 1 ≤ i ≤ k, then n3 ≤ b as well.
Note that there is a unique pair (p, q) of coprime integers with p > q ≥ 1, so that
p

p−q
= [b1, b2, . . . , bk]. So, in other words, if n belongs to Zk(

p

p−q
), for some coprime

pair (p, q), so does n3. We would like to emphasize that n ≤ b does not necessarily
imply that n1 ≤ b, because of the fact that sixth component of n1 is one higher
than that of n, and it does not necessarily imply that n2 ≤ b, because of the fact
that fourth component of n2 is one higher than that of n.

Proof of Proposition 5. LetWp,q(n) denote the minimal symplectic filling of (L(p, q), ξcan)
that corresponds to n = (n1, . . . , nk) ∈ Zk(

p

p−q
), and let ∆(n) be the corresponding

vertex in the graph Gp,q

k . We now show that the rational blowdown depth ofWp,q(n)
is bounded above by dpt(n). The proof will be by induction on r = dpt(n). First
suppose that r = 0, then Wp,q(n) = Wp,q(uk) is the canonical symplectic filling.

Now suppose that for some l ≥ 1 the result is true for 0 ≤ r < l. We show that
the result remains true for r = l. Suppose that dpt(n) = l. Next, by setting n0 = n,
and proceeding exactly as in proof of Lemma 46, we obtain the path

∆(uk) = ∆(n0),∆(n1), . . . ,∆(nt)

of triangulations and the associated triangles τ1, τ2, . . . , τt contained in both ∆(nt)
and ∆(n), where dpt(nt) = l − 1. Furthermore, nt also belongs to Zk(

p

p−q
), and
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hence Wp,q(nt) is also a minimal symplectic filling of (L(p, q), ξcan). Since the corre-
sponding sequence of distinguished diagonals di1 , di2, . . . , dit is contiguous, it fol-
lows from the arguments given in the proof of Theorem 1 that the monodromy of
the planar Lefchetz fibration on Wp,q(nt) is obtained from the monodromy of the
planar Lefschetz fibration on Wp,q(uk) by a single rational blowdown.

Now peel away the triangles τ1, τ2, . . . , τt from ∆(n) and ∆(nt) to obtain triangu-
lations ∆(n) and ∆(nt) of Pk−t+1. Note that n will have l − 1 interior 1’s and nt =
uk−t. By the induction hypothesis, it follows that the planar Lefschetz fibration on
W (n,m) is obtained from the planar Lefschetz fibration on W (uk−t,n + m − uk−t),
where m is the (k − t)-tuple having 1 in each component that n has an interior 1
and 0 elsewhere, by at most l − 1 rational blowdowns. It follows that Wp,q(n) can
be obtained from Wp,q(nt) by at most l− 1 rational blowdowns and hence from the
canonical symplectic filling Wp,q(uk) by at most l rational blowdowns. �

Remark 48. Proposition 5 shows that, for each ∆(n) ∈ Gp,q

k , there is a path of length
dpt(n) from ∆(uk) to ∆(n) in Gp,q

k . On the other hand, Lemma 31 implies that the
minimum length of a path from ∆(uk) to ∆(n) in Gp,q

k , is at least dpt(n). Therefore,
dpt(n) is equal to the ”path-length” of ∆(n) in Gp,q

k , which is defined to be the
length of the shortest directed path in Gp,q

k , starting from the root vertex ∆(uk) and
ending at the vertex ∆(n).

Executive summary: Here we explicitly describe the rational blowdown algo-
rithm. Suppose that n ∈ Zk(

p

p−q
) for some coprime pair (p, q) with 1 ≤ q < p such

that dpt(n) = l. We enumerate the interior 1’s in the k-tuple n from left to right
and blowdown repeatedly the interior 1 of the same enumeration (for instance,
leftmost) until we get to some (k − t1)-tuple nt1 with dpt(nt1) = l − 1. We repeat
the same process to obtain a sequence n,nt1 , . . .ntl so that dpt(ntj ) = l − j. Then
there is a corresponding path ∆(uk),∆(nt1), . . . ,∆(ntl) = ∆(n) in Gp,q

k so that the
minimal symplectic filling Wp,q(ntj+1

) can be obtained from the minimal symplec-
tic filling Wp,q(ntj ) by a single rational blowdown along a linear plumbing graph.
Note that the triangulation ∆(ntj+1

) is obtained from the triangulation ∆(ntj ) by
diagonal flips along a contiguous sequence of distinguished diagonals in ∆(ntj ).
Therefore, the linear plumbing graph for this rational blowdown can be obtained
using Proposition 43.

Example 49. Let n = (3, 1, 4, 3, 1, 2, 4, 1, 4) ∈ Z9. Note that dpt(n) = 3. Fix a
coprime pair (p, q) with 1 ≤ q < p such that the length of the Hirzebruch-Jung
continued fraction expansion of p

p−q
is 9 and n ∈ Z9(

p

p−q
). By blowing down n

sequentially at the middle interior 1 three times, we obtain nt1 = (3, 1, 3, 2, 1, 4),
where dpt(nt1) = 2. By blowing down nt1 sequentially at the rightmost interior
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1 twice, we obtain nt2 = (3, 1, 2, 2), where dpt(nt2) = 1. By blowing down nt2 se-
quentially at the unique interior 1 twice, we obtain nt3 = (1, 1), where dpt(nt3) = 0.
The corresponding path in Gp,q

9 is given by ∆(u9),∆(nt1) = ∆((1, 2, 3, 3, 1, 2, 4, 2, 1)),
∆(nt2) = ∆((1, 2, 4, 3, 1, 2, 4, 1, 3)), ∆(n) = ∆(nt3) = ∆((3, 1, 4, 3, 1, 2, 4, 1, 4)).

As a matter of fact ∆(n) is obtained from ∆(u9) by diagonal flips along the se-
quence d4, d5, d3, d7, d6, d1, d2 of distinguished diagonals in ∆(u9), which indeed
determines a path in G9. Our algorithm partitions this sequence as follows: the
sequence d4, d5, d3 of distinguished diagonals is contiguous in ∆(u9), the sequence
of distinguished diagonals d7, d6 is contiguous in ∆(nt1), and the sequence d1, d2
of distinguished diagonals is contiguous in ∆(nt2). We conclude that the minimal
symplectic filling Wp,q(nt1) can be obtained from the canonical symplectic filling
Wp,q(u9) by a rational blowdown along the linear plumbing graph with weights
−3,−5,−2, the minimal symplectic filling Wp,q(nt2) can be obtained from Wp,q(nt1)
by a rational blowdown along the linear plumbing graph with weights −5,−2,
and finally Wp,q(n) can be obtained from Wp,q(nt2) by a rational blowdown along
the linear plumbing graph with weights −2,−5.

8. EXAMPLES OF RATIONAL BLOWDOWN GRAPHS

In this section, to avoid cumbersome notation, once a pair (p, q) of coprime inte-
gers with p > q ≥ 1 is fixed, for any k-tuple n = (n1, . . . , nk) ∈ Zk we will speak
about the 4-manifold n referring to Wp,q(n) as in Definition 40. If n ∈ Zk(

p

p−q
),

we will refer to n as a minimal symplectic filling of (L(p, q), ξcan). We will also
speak about a rational blowdown n → n′, for a pair of minimal symplectic fill-
ings n,n′ ∈ Zk(

p

p−q
). Moreover, by the triangulation n, we will mean ∆(n) as in

Definition 22.
In the following, for 2 ≤ s, we denote the curve δs,s in Definition 44 by αs. For

the definition of the curves βi,t,j in the disk Dk with k-holes, we refer to Figure 10.

8.1. Example A. Let (p, q) = (24, 7). Then p

p−q
= [2, 2, 4, 2, 2]. The contact 3-

manifold (L(24, 7), ξcan) has 4 distinct minimal symplectic fillings, up to diffeo-
morphism, which are parametrized by the set

Z5(
24
17
) = {(1, 2, 2, 2, 1), (2, 1, 3, 2, 1), (1, 2, 3, 1, 2), (2, 1, 4, 1, 2)}.

The set of vertices of the graded, directed, rooted, connected graph G24,7
5 consists

of the 4 triangulations of the hexagon which belongs to the set T 24,7(P6) ⊂ T (P6).
These triangulations, each of which represents a distinct minimal symplectic filling
of (L(24, 7), ξcan), are encircled in red in Figure 12.

There are 4 edges of the graph G24,7
5 , consisting of the red arcs labelled by 1, 2,

3 and 4 in Figure 12, corresponding to the edges e1, e1,3, e3, and e3,1, respectively,
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FIGURE 12. The set of vertices of the graded, directed, rooted, con-

nected graph G24,7
5 consists of the triangulations of the hexagon en-

circled in red, each of which represents a distinct minimal symplectic
filling of (L(24, 7), ξcan), and the edges are the red arcs, each of which
represents a rational blowdown.

in the graph G5. We denote the rational blowdowns represented by these arcs as

RBD1, RBD2, RBD3, and RBD4, respectively. By definition, each edge of G24,7
5 is

given by the concatenation of some directed edges of G5. Note that there is no edge

in G24,7
5 from the root vertex (1, 2, 2, 2, 1) to the vertex (2, 1, 4, 1, 2), since there are

two distinct paths, e1 • e1,3 and e3 • e3,1, from (1, 2, 2, 2, 1) to (2, 1, 4, 1, 2) in G5, where
• denotes the concatenation of the edges.

In the following, using the algorithm described in Section 6, we will explicitly
describe the lantern substitution corresponding to each of the rational blowdowns
in Figure 12. First of all, we observe that the monodromy of the planar Lefschetz
fibration on the minimal resolution (1, 2, 2, 2, 1) is the product

D(α2) ◦D(α3) ◦D(α4) ◦D(α5) ◦D(γ1) ◦D
2(γ3) ◦D(γ5)
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of Dehn twists along the curves given in Figure 13.

γ1 α2 α3 α4 α5

γ3
γ5

FIGURE 13. Initial monodromy curves in the disk D5 with 5-holes.

The aforementioned product of Dehn twists is also the monodromy of the pla-
nar open book OB24,7 that supports the contact 3-manifold (L(24, 7), ξcan). Note
that each triangulation in Figure 12, represents a smooth 4-manifold with boundary
L(24, 7), together with a planar Lefschetz fibration whose monodromy is a differ-
ent factorization, positive for the ones encircled in red, and achiral otherwise, of
the initial monodromy of the planar open book OB24,7.

The red arc labelled by 1 in Figure 12 represents RBD1, that corresponds to a
lantern substitution in the monodromy of the planar Lefschetz fibration on the
canonical symplectic filling (1, 2, 2, 2, 1), as follows. We encircled the components
of the 5-tuple which increase and boxed the ones that decrease along the edge e1
below, which is completely determined by the diagonal flip along d1:

(1, 2, 2, 2, 1)
RBD1−−−→
lantern

( 2 , 1 , 3 , 2, 1).

Thus, to realize RBD1, we apply a lantern substitution along the 4-holed sphere in
D5 bounded by the curves γ1, α2, α3, γ3 (see Figure 13), where we replace

D(γ1) ◦D(α2) ◦D(α3) ◦D(γ3)

by

D(δ2,3) ◦D(β1,2,3) ◦D(γ2).

It follows that the monodromy of the planar Lefschetz fibration on the minimal
symplectic filling (2, 1, 3, 2, 1) is given by

D(δ2,3) ◦D(β1,2,3) ◦D(γ2) ◦D(γ3) ◦D(α4) ◦D(α5) ◦D(γ5).

The red arc labelled by 2 in Figure 12, which represents RBD2, corresponds to
a lantern substitution in the monodromy of the planar Lefschetz fibration on the
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minimal symplectic filling (2, 1, 3, 2, 1), as follows. Based on the diagonal flip

(2, 1, 3, 2, 1)
RBD2−−−→
lantern

(2, 1, 4 , 1 , 2 ),

along d3, we apply a lantern substitution along the 4-holed sphere in D5 bounded
by the curves γ3, α4, α5, γ5 (see Figure 13), where we replace

D(γ3) ◦D(α4) ◦D(α5) ◦D(γ5)

by

D(δ4,5) ◦D(β3,4,5) ◦D(γ4).

As a result the monodromy of the planar Lefschetz fibration on the minimal sym-
plectic filling (2, 1, 4, 1, 2) is given by

(1)
D(δ2,3) ◦D(β1,2,3) ◦D(γ2) ◦D(δ4,5) ◦D(β3,4,5) ◦D(γ4) =

D(δ2,3) ◦D(δ4,5) ◦D(β3,4,5) ◦D(β1,2,3) ◦D(γ2) ◦D(γ4).

The red arc labelled by 3 in Figure 12, which represents RBD3, corresponds to
a lantern substitution in the monodromy of the planar Lefschetz fibration on the
canonical symplectic filling (1, 2, 2, 2, 1), as follows. Based on the diagonal flip

(1, 2, 2, 2, 1)
RBD3−−−→
lantern

(1, 2, 3 , 1 , 2 ),

along d3, we apply a lantern substitution along the 4-holed sphere in D5 bounded
by the curves γ3, α4, α5, γ5 (see Figure 13), where we replace

D(γ3) ◦D(α4) ◦D(α5) ◦D(γ5)

by

D(δ4,5) ◦D(β3,4,5) ◦D(γ4).

It follows that the monodromy of the planar Lefschetz fibration on the minimal
symplectic filling (1, 2, 3, 1, 2), is given by

D(γ1) ◦D(α2) ◦D(α3) ◦D(γ3) ◦D(δ4,5) ◦D(β3,4,5) ◦D(γ4).

The red arc labelled by 4 in Figure 12, which represents RBD4, corresponds to
a lantern substitution in the monodromy of the planar Lefschetz fibration on the
minimal symplectic filling (1, 2, 3, 1, 2), as follows. Based on the diagonal flip

(1, 2, 3, 1, 2)
RBD4−−−→
lantern

( 2 , 1 , 4 , 1, 2),

along d1, we apply a lantern substitution along the 4-holed sphere in D5 bounded
by the curves γ1, α2, α3, γ3 (see Figure 13), where we replace

D(γ1) ◦D(α2) ◦D(α3) ◦D(γ3)
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by
D(δ2,3) ◦D(β1,2,3) ◦D(γ2).

As a result the monodromy of the planar Lefschetz fibration on the minimal sym-
plectic filling (2, 1, 4, 1, 2) is given by

(2)
D(δ2,3) ◦D(β1,2,3) ◦D(γ2) ◦D(δ4,5) ◦D(β3,4,5) ◦D(γ4) =

D(δ2,3) ◦D(δ4,5) ◦D(β3,4,5) ◦D(β1,2,3) ◦D(γ2) ◦D(γ4),

which indeed agrees with the factorization (1) above.
Note that the concatenation of RBD1 and RBD2 (and equivalently, the concate-

nation of RBD3 and RBD4) can be viewed as a monodromy substitution, where the
initial factorization

D(α2) ◦D(α3) ◦D(α4) ◦D(α5) ◦D(γ1) ◦D
2(γ3) ◦D(γ5)

is replaced with the product

D(δ2,3) ◦D(δ4,5) ◦D(β3,4,5) ◦D(β1,2,3) ◦D(γ2) ◦D(γ4).

However, this monodromy substitution does not correspond to a rational blow-
down, since otherwise (L(24, 7), ξcan) would have a rational homology ball fill-
ing, which contradicts Proposition 38. As a matter of fact, the minimal sym-
plectic filling (2, 1, 4, 1, 2) cannot be obtained from the canonical symplectic filling
(1, 2, 2, 2, 1), by a single rational blowdown as we show in Proposition 50.

Proposition 50. The minimal symplectic filling (2, 1, 4, 1, 2) of (L(24, 7), ξcan) cannot be
obtained from the canonical symplectic filling (1, 2, 2, 2, 1), by a single rational blowdown.
Consequently, the rational blowdown depth of the minimal symplectic filling (2, 1, 4, 1, 2)
is equal to dpt((2, 1, 4, 1, 2)) = 2.

Proof. We first observe that the canonical symplectic filling u5 = (1, 2, 2, 2, 1) of
(L(24, 7), ξcan) is diffeomorphic to the linear plumbing of disk bundles over a sphere
with weights −4,−2,−4 because 24

7
= [4, 2, 4]. It follows that the lattice H2(u5,Z)

is even, i.e. the square of any class in H2(u5,Z) is an even integer. Note that since
(2, 1, 4, 1, 2) has height 2, the linear plumbing graph for a possible rational blow-
down from u5 to (2, 1, 4, 1, 2) must have two vertices with weights −2 and −5.
However, u5 cannot contain an embedded sphere of odd self-intersection, since
H2(u5,Z) is even. �

8.2. Example B. Let (p, q) = (81, 47). Then p

p−q
= [3, 2, 3, 3, 3]. The contact 3-

manifold (L(81, 47), ξcan) has 6 distinct minimal symplectic fillings, up to diffeo-
morphism, which are parametrized by the set Z5(

81
81−47

) =

{(1, 2, 2, 2, 1), (2, 1, 3, 2, 1), (1, 2, 3, 1, 2), (3, 1, 2, 3, 1), (3, 1, 3, 1, 3), (3, 2, 1, 3, 2)}.
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The set of vertices of the graded, directed, rooted, connected graph G81,47
5 consists

of the 6 triangulations of the hexagon which belongs to the set T 81,47(P6) ⊂ T (P6).
These triangulations are encircled in red in Figure 14, and each one of them repre-
sents a distinct minimal symplectic filling of (L(81, 47), ξcan).
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FIGURE 14. The set of vertices of the graded, directed, rooted, con-

nected graph G81,47
5 consists of the triangulations of the hexagon en-

circled in red, each of which represents a distinct minimal symplectic
filling of (L(81, 47), ξcan), and the edges are the red arcs, each of which
represents a rational blowdown.

There are 7 edges of the graph G81,47
5 , consisting of the red arcs enumerated from

1 to 7 in Figure 14, each of which represents a rational blowdown. By definition,

each edge of G81,47
5 is given by the concatenation of some directed edges of G5 as

follows, RBD1 = e1, RBD2 = e1,2, RBD3 = e1,3 • e1,3,2, RBD4 = e2 • e2,1 • e2,1,3,
RBD5 = e3, RBD6 = e3,1•e3,1,2, and RBD7 = e1•e1,2. Note that the paths e1•e1,3•e1,3,2
and e3 • e3,1 • e3,1,2 in G5 are not edges in G81,47

5 , since there are two distinct paths
from (1, 2, 2, 2, 1) to (3, 1, 3, 1, 3) in G5.
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In the following, we will explicitly describe the lantern substitutions needed
for each of the rational blowdowns in Figure 14. First of all, we observe that the
initial monodromy corresponding to the planar Lefschetz fibration on the minimal
resolution (1, 2, 2, 2, 1) is the product

D(α2) ◦D(α3) ◦D(α4) ◦D(α5) ◦D
2(γ1) ◦D(γ3) ◦D(γ4) ◦D

2(γ5)

of Dehn twists along the curves given in Figure 15.

γ1 α2 α3 α4 α5

γ3
γ4 γ5

FIGURE 15. Initial monodromy curves in the disk D5 with 5-holes.

The aforementioned product of Dehn twists is also the monodromy of the pla-
nar open book OB81,47 that supports the contact 3-manifold (L(81, 47), ξcan). Note
that each triangulation in Figure 14, represents a smooth 4-manifold with boundary
L(81, 47), together with a planar Lefschetz fibration whose monodromy is a differ-
ent factorization, positive for the ones encircled in red, and achiral otherwise, of
the initial monodromy of the planar open book OB81,47.

The red arc labelled by 1 in Figure 14 (which is the edge e1 in the graph G5),
represents RBD1, that corresponds to a lantern substitution in the monodromy
of the planar Lefschetz fibration on the canonical symplectic filling (1, 2, 2, 2, 1),
as follows. We encircled the entries of the 5-tuple which increase and boxed the
ones that decrease along the edge e1 below, which is completely determined by the
diagonal flip along d1:

(1, 2, 2, 2, 1)
e1−−−→

lantern
( 2 , 1 , 3 , 2, 1).

Thus, to realize RBD1, we apply a lantern substitution along the 4-holed sphere in
D5 bounded by the curves γ1, α2, α3, γ3 (see Figure 15). As a result of this lantern
substitution, one of the Dehn twists that appear in the new factorization is along
the convex curve δ2,3.

The red arc labelled by 2 in Figure 14 (which is the edge e1,2 in the graph G5),
represents RBD2, that corresponds to a lantern substitution in the monodromy of
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the planar Lefschetz fibration on the minimal symplectic filling (2, 1, 3, 2, 1). The
lantern substitution is determined by the diagonal flip along d2:

(2, 1, 3, 2, 1)
e1,2

−−−→
lantern

( 3 , 1, 2 , 3 , 1).

Thus, to realize RBD2, we apply a lantern substitution along the 4-holed sphere
bounded by the curves γ1, δ2,3, α4, γ4 in D5. Note that the Dehn twist along δ2,3
appeared as a result of RBD1, and it belongs to the positive factorization of the
monodromy of the planar Lefschetz fibration on the minimal symplectic filling
(2, 1, 3, 2, 1).

The red arc labelled by 7 in Figure 14 (which is the concatenation e1 • e1,2 of
the edges e1 and e1,2 in the graph G5), represents RBD7. In other words, the min-
imal symplectic filling (3, 1, 2, 3, 1) can be obtained from the minimal resolution
(1, 2, 2, 2, 1) by a single rational blowdown, that is a concatenation of RBD1 and
RBD2. Here is an explanation of this phenomenon using explicit monodromy sub-
stitutions. We observe that in the concatenation of the two lantern substitutions
we use Dehn twists along the curves γ1, γ1, γ3, γ4, α2, α3, α4, all of which belong to
the set of initial monodromy curves in Figure 15, and Dehn twists along the curves
γ2, γ3 (again belonging to the initial set of curves) emerge as a result of these sub-
stitutions. So, in the concatenation, we could just use Dehn twists along the curves
γ1, γ1, γ4, α2, α3, α4. This means that, there is a relation in the mapping class group
of the 5-holed sphere inD5 bounded by the curves γ1, α2, α3, α4, γ4, where the prod-
uct

D2(γ1) ◦D(α2) ◦D(α3) ◦D(α4) ◦D(γ4)

is isotopic to the product of Dehn twists about 4 curves. One can easily verify
that this relation is precisely the daisy relation (see [6]). Since the triangulation
(3, 1, 2, 3, 1) is obtained from (1, 2, 2, 2, 1) by flips along the contiguous sequence
d1, d2 of distinguished diagonals in (1, 2, 2, 2, 1), the linear plumbing graph for
RBD7 has weights −2,−5, by Proposition 43. We would like to point out that the
rational blowdown RBD7 is not immediately visible in the dual plumbing graph
of the corresponding cyclic quotient singularity, which is the linear graph with
weights −2,−4,−3,−3,−2.

Note that the minimal symplectic filling (3, 1, 3, 1, 3) of height 3 in Figure 14,
can be obtained from the minimal resolution (1, 2, 2, 2, 1) via two distinct rational
blowdown sequences: Apply RBD1 first and then RBD3 or apply RBD5 first and
then RBD6. We already discussed the lantern substitution for RBD1 and the mon-
odromy substitution for RBD3 can be seen as follows. First of all, RBD3 is obtained
by a concatenation of two lantern substitutions corresponding to the edges e1,2 and
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e1,3,2 in the graph G5, respectively, as follows:

(2, 1, 3, 2, 1)
e1,3

−−−→
lantern

(2, 1, 4 , 1 , 2 )
e1,3,2
−−−→
lantern

( 3 , 1, 3 , 1, 3 ).

Starting from the monodromy factorization for (2, 1, 3, 2, 1), we need to insert
a cancelling pair of Dehn twists along γ3, which is dictated by the fact that the
triangulation (2, 1, 4, 1, 2) that we skip does not belong to T 81,47(P6), exactly be-
cause its third entry (colored blue in Figure 14) is one higher than the third en-
try of (3, 2, 3, 3, 3). Then we apply a lantern substitution along the 4-holed sphere
bounded by the curves γ3, α4, α5, γ5. It is clear that the resulting monodromy fac-
torization has a negative Dehn twist along γ3, and we obtain an achiral planar Lef-
schetz fibration on (2, 1, 4, 1, 2) as expected, since the triangulation (2, 1, 4, 1, 2) is

indeed included in the graph G5 but not in G81,47
5 !

Nevertheless, as a result of the first lantern substitution corresponding to the
edge e1,3, a Dehn twist emerges in the new factorization along the convex curve δ4,5,
which allows one to apply a lantern substitution along the 4-holed sphere bounded
by the curves γ1, δ2,3, δ4,5, γ5. The resulting monodromy factorization of the planar
Lefschetz fibration on the minimal symplectic filling (3, 1, 3, 1, 3) is positive again
since a Dehn twist along γ3 emerges in the new factorization to cancel out the neg-
ative one. Since the triangulation (3, 1, 3, 1, 3) is obtained from (2, 1, 3, 2, 1) by flips
along the contiguous sequence d3, d2 of distinguished diagonals in (2, 1, 3, 2, 1), the
linear plumbing graph for RBD3 has weights −5,−2, by Proposition 43.

We would like to show that RBD3 is a daisy substitution for the 5-holed sphere
and illustrate an important step in our proof of Theorem 1. Consider the path

n0 = (2, 1, 3, 2, 1), n1 = (2, 1, 4, 1, 2), n2 = (3, 1, 3, 1, 3)

in G5 and let
n0 = (1, 2, 2, 1), n1 = (1, 3, 1, 2), n2 = (2, 2, 1, 3)

be the corresponding path in G4, obtained by blowing down the 1 in the second
entry of each of the 5-tuples n0,n1,n2. Note that this corresponds, geometrically,
to peeling off the same triangle from each one of the triangulations n0,n1,n2. Now
in the concatenation of the two lantern substitutions in D4! corresponding to

(1, 2, 2, 1) −−−→
lantern

(1, 3 , 1 , 2 ) −−−→
lantern

( 2 , 2 , 1, 3 ),

we use Dehn twists along the curves γ1, γ2, γ4, γ4, α2, α3, α4 (overline is used to
denote the curves in D4, to distinguish them from the curves in D5) and Dehn
twists along the curves γ2, γ3 emerge as a result of these substitutions. Overall,
we substitute the product of Dehn twists along the curves γ1, γ4, γ4, α2, α3, α4, by
Dehn twists along four curves. One can easily verify that this is nothing but a
daisy substitution. To see that, the path n0,n1,n2 is also a rational blowdown of
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the same type, we just paste back the triangle we peeled away, which has the effect
of embedding D4 into D5 as illustrated in Figure 16.

ψ(γ1)
ψ(α2)

ψ(α3) ψ(α4)

ψ(γ4)

γ1 α2 α3 α4

γ4

ψ

FIGURE 16. The embedding ψ : D4 → D5.

More precisely, if ψ : D4 → D5 denotes this embedding, then ψ(γ1) = γ1, ψ(α2) =
δ2,3, ψ(α3) = α4, ψ(α4) = α5, and ψ(γ4) = γ5. Therefore, the corresponding daisy
substitution in D5 replaces

D(ψ(γ1)) ◦D(ψ(α2)) ◦D(ψ(α3)) ◦D(ψ(α4)) ◦D
2(ψ(γ4))

by the product of four Dehn twists along curves in D5 obtained by the embedding
ψ.

Remark 51. The concatenation of the two rational blowdowns RBD1 and RBD3,
is not a rational blowdown. To see this, we simply observe that in the concatena-
tion of the three lanterns (one for RBD1, and two for RBD3), we use Dehn twists
along the curves γ1, γ1, γ3, γ3, γ5, γ5, α2, α3, α4, α5 and Dehn twists along the curves
γ2, γ3, γ4 emerge as a result of these substitutions. After the cancellations, we see
that the product of Dehn twists along the curves γ1, γ1, γ3, γ5, γ5, α2, α3, α4, α5 is re-
placed by the product of Dehn twists along six curves in D5. We claim that this
monodromy substitution does not correspond to a rational blowdown. Suppose,
on the contrary, that it did correspond to a rational blowdown and consider the
contact lens space (L(r, s), ξcan), where r

s
= [2, 4, 4, 2]. Since r

r−s
= [3, 2, 3, 2, 3], the

monodromy of the canonical symplectic filling of (L(r, s), ξcan) is a product of Dehn
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twists precisely along the curves γ1, γ1, γ3, γ5, γ5, α2, α3, α4, α5. As we are assuming
that the given monodromy substitution does correspond to a rational blowdown,
it follows that the canonical symplectic filling of (L(r, s), ξcan) can be rationally
blown down. However, this contradicts Proposition 38 as −2,−4,−4,−2 cannot
be obtained from −4 by iterations of type (I) and (II). Our claim follows.

The minimal symplectic filling (3, 2, 1, 3, 2) of height 3, can be obtained from
(1, 2, 2, 2, 1) by a single rational blowdown RBD4 which is the composition of three
lantern substitutions,

(1, 2, 2, 2, 1)
e2−−−→

lantern
(1, 3 , 1 , 3 , 1)

e2,1
−−−→
lantern

( 2 , 2 , 1, 4 , 1)
e2,1,3
−−−→
lantern

( 3 , 2, 1, 3 , 2 )

each of which is represented by the corresponding blue edge in Figure 14. The
lantern corresponding to the blue edge e2 requires the insertion of a cancelling
pair of Dehn twists along γ2, which is dictated by the fact that the triangulation
(1, 3, 1, 3, 1) that we skip does not belong to T 81,47(P6), exactly because its second en-
try (colored blue in Figure 14) is one higher than the second entry of (3, 2, 3, 3, 3).
Then we apply a lantern substitution along the 4-holed sphere bounded by the
curves γ2, α3, α4, γ4. As a result of this first lantern substitution, a Dehn twist
emerges in the new factorization along the convex curve δ3,4. After inserting a
cancelling pair of Dehn twists along γ4, which is dictated by the fact that the tri-
angulation (2, 2, 1, 4, 1) that we skip does not belong to T 81,47(P6), exactly because
its fourth entry (colored blue in Figure 14) is one higher than the fourth entry of
(3, 2, 3, 3, 3). This allows one to apply a lantern substitution, corresponding to the
blue edge e2,1 along the 4-holed sphere bounded by the curves γ1, α2, δ3,4, γ4. In
the resulting monodromy factorization a Dehn twist along γ2 emerges to cancel
out the negative one we inserted in the previous step, but we still have a negative
twist along γ4. The final lantern substitution, corresponding to the blue edge e2,1,3,
is applied along the 4-holed sphere bounded by the curves γ1, δ2,4, α5, γ5. As a re-
sult of this final lantern substitution, a Dehn twist emerges in the new factorization
along γ4, which cancels out the negative one we inserted in the previous step so
that we have an explicit positive factorization for the minimal symplectic filling
(3, 2, 1, 3, 2).

In terms of the monodromy, by the concatenation of the 3 lanterns, the product
of Dehn twists along the curves γ1, γ1, γ4, γ5, α2, α3, α4, α5 is factorized into product
of Dehn twists about 5 other curves in D5, which was explained in details in our
paper [2]. Note that this is not a daisy substitution. Nevertheless, we observe
that the rational blowdown RBD4 is equivalent to replacing a neighborhood of
the plumbing graph with weights −2,−5,−3 with a rational homology ball, by
Proposition 43, since (3, 2, 1, 3, 2) is obtained from (1, 2, 2, 2, 1) by flips along the
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contiguous sequence d2, d1, d3 of distinguished diagonals in (1, 2, 2, 2, 1). Nota that
the rational blowdown RBD4 is not visible at all in the dual plumbing graph.

Finally, we take a closer look atRBD5 and RBD6. To realize RBD5, corresponding
to the edge e3,

(1, 2, 2, 2, 1)
e3−−−→

lantern
(1, 2, 3 , 1 , 2 ),

we apply the lantern substitution along the 4-holed sphere bounded by the curves
γ3, α4, α5, γ5, to get the monodromy factorization for the minimal symplectic filling
(1, 2, 3, 1, 2). Note that a Dehn twist along δ4,5 appear in the new factorization. To
realize RBD6, corresponding to the concatenation of the edge e3,1, and e3,1,2,

(1, 2, 3, 1, 2)
e3,1

−−−→
lantern

( 2 , 1 , 4 , 1, 2)
e3,1,2
−−−→
lantern

( 3 , 1, 3 , 1, 3 ),

starting from the monodromy factorization for (1, 2, 3, 1, 2), we insert a cancelling
pair of Dehn twists along γ3 and apply a lantern substitution along the 4-holed
sphere bounded by the curves γ1, α2, α3, γ3. It follows that the resulting achiral
monodromy factorization corresponding to the triangulation (2, 1, 4, 1, 2) is the
same as described in the previous paragraph, and we proceed exactly in the same
manner to finish the description of RBD6.

The concatenation of the two rational blowdowns RBD5 and RBD6, is not a ratio-
nal blowdown, which can be shown as in Remark 51. In fact, we have the following
result.

Proposition 52. The minimal symplectic filling (3, 1, 3, 1, 3) of (L(81, 47), ξcan) cannot be
obtained from the canonical symplectic filling (1, 2, 2, 2, 1), by a single symplectic rational
blowdown. Consequently, the rational blowdown depth of the minimal symplectic filling
(3, 1, 3, 1, 3) is equal to dpt((3, 1, 3, 1, 3)) = 2.

Proof. Note that any rational blowdown from the canonical symplectic filling u5 =
(1, 2, 2, 2, 1) of (L(81, 47), ξcan) to the minimal symplectic filling (3, 1, 3, 1, 3) must
be of height 3, and hence requires a symplectic embedding of the linear plumbing
graph with weights −6,−2,−2 or −2,−5,−3 into u5. To rule out any possible
embedding of the linear plumbing graph with weights −6,−2,−2 into u5, we just
show that the linear plumbing with weights −2,−2 cannot be embedded into u5.
On way to see the latter is as follows. We represent, as described in [10, Section 2],
the classes in H2(u5,Z) as nullhomologous linear combinations of the vanishing
cycles of the planar Lefschetz fibration on u5. Then we use the fact that any class
whose square is −2 is a nullhomologous linear combination of only two vanishing
cycles with ±1 coefficients to derive a contradiction.

Next, we discuss all possible symplectic embeddings of the linear plumbing
graph with weights −2,−5,−3 into u5. Such an embedding is indeed possible
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because we just showed above that the minimal symplectic filling (3, 2, 1, 3, 2) is
obtained from u5 by the (symplectic) rational blowdown RBD4, which is applied
along the linear plumbing graph with weights −2,−5,−3. We claim that there
are only two possible symplectic embeddings of the linear plumbing graph with
weights −2,−5,−3 into u5, and the intersection forms of the minimal symplec-
tic fillings obtained by symplectic rational blowdowns along these embeddings
are isomorphic. But since the intersection forms of the fillings (3, 2, 1, 3, 2) and
(3, 1, 3, 1, 3), given respectively by

[
−2 1
1 −5

]
and

[
−2 1
1 −41

]

are not isomorphic, we conclude that (3, 1, 3, 1, 3) cannot be obtained by a sym-
plectic rational blowdown from u5 along any linear plumbing graph with weights
−2,−5,−3.

To finish the proof, we give an argument to prove our claim in the preceding
paragraph as follows. We notice that the symplectic filling u5 is diffeomorphic to
the linear plumbing with weights −2,−4,−3,−3,−2 (since 81

47
= [2, 4, 3, 3, 2]) and

hence the lattice H2(u5,Z) is given by




−2 1 0 0 0
1 −4 1 0 0
0 1 −3 1 0
0 0 1 −3 1
0 0 0 1 −2




with respect to the natural basis represented by the symplectic spheres in the linear
plumbing with weights −2,−4,−3,−3,−2, respectively. Let [S1], . . . , [S5] denote
these classes in H2(u5,Z). By the adjunction equality we calculate that c1([S1]) =
c1([S5]) = 0, c1([S2]) = −2, c1([S3]) = c1([S4]) = −1, where c1([Si]) is defined to be
〈c1(u5), [Si]〉. Now using the latticeH2(u5,Z), and the restrictions induced by c1, we
conclude by a straightforward calculation, that the only embeddings of symplectic
spheres of square −2, −5, −3 (as a linear chain in this order) are given by

[S1], [S2] + [S3], [S4] or [S1], [S2] + [S3], [S4] + [S5].

Finally, by considering the basis [S1], [S2], [S3], [S4] + [S5],−[S5] of H2(u5,Z) , we
see that these two embeddings are equivalent by a change of basis, and hence
the intersection forms of the minimal symplectic fillings obtained by symplectic
rational blowdowns along these embeddings are isomorphic. �
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(1, 2, 2, 2, 1)

(2, 1, 3, 2, 1) (1, 2, 3, 1, 2)

(3, 1, 2, 3, 1)

(3, 1, 3, 1, 3) (3, 2, 1, 3, 2)

−4

−4

−5,−2

−2,−5,−3

−4

−2,−5

−2,−5

FIGURE 17. The rational blowdown graph G81,47
5 .

We depicted another version of the graph G81,47
5 in Figure 17, and decorated each

edge with the weights of the linear plumbing graph of type T0 that is used in the
corresponding rational blowdown.

8.3. Example C. Let (p, q) = (37, 10). Then p

p−q
= [2, 2, 3, 2, 4]. The contact 3-

manifold (L(37, 10), ξcan) has 4 distinct minimal symplectic fillings, up to diffeo-
morphism, which are parametrized by the set

Z5(
37

37−10
) = {(1, 2, 2, 2, 1), (2, 1, 3, 2, 1), (1, 2, 3, 1, 2), (2, 2, 2, 1, 4)}.

The graded, directed, rooted, connected graph G37,10
5 can obtained from G5 as in

Example B. Note that the minimal symplectic filling (2, 1, 3, 2, 1) can be obtained
from (1, 2, 2, 2, 1) by a rational blowdown (RBD1 of Example B) along the edge e1,
while the minimal symplectic filling (1, 2, 3, 1, 2) can be obtained from (1, 2, 2, 2, 1)
by a rational blowdown (RBD5 of Example B) along the edge e3.

The minimal symplectic filling (2, 2, 2, 1, 4) can be obtained from (1, 2, 3, 1, 2) by
a rational blowdown obtained as a concatenation of the lantern substitutions cor-
responding to the edges e3,2 and e3,2,1 in Figure 3. Note that we need to insert a
cancelling pair of Dehn twists along γ2 for the lantern substitution corresponding
to the edge e3,2, but the negative Dehn twists cancels out once we apply the lantern
substitution corresponding to the edge e3,2,1.
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(1, 2, 2, 2, 1)

(2, 1, 3, 2, 1)
(1, 2, 3, 1, 2)

(2, 2, 2, 1, 4)

−4

−5,−2

−4

−6,−2,−2

FIGURE 18. The rational blowdown graph G37,10
5 .

Moreover, the minimal symplectic filling (2, 2, 2, 1, 4) can be obtained from the
minimal resolution (1, 2, 2, 2, 1) by a single rational blowdown which is the concate-
nation of three lantern substitutions,

(1, 2, 2, 2, 1)
e3−−−→

lantern
(1, 2, 3 , 1 , 2 )

e3,2
−−−→
lantern

(1, 3 , 2 , 1, 3 )
e3,2,1
−−−→
lantern

( 2 , 2 , 2, 1, 4 ).

We observe that in the concatenation of 3 lanterns we use Dehn twists along the
curves γ1, γ2, γ3, γ5, γ5, γ5, α2, α3, α4, α5 and Dehn twists along the curves γ2, γ3, γ4
emerge as a result of these substitutions. After the cancelations, we only use Dehn
twists along the curves γ1, γ5, γ5, γ5, α2, α3, α4, α5. This means that, there is a rela-
tion in the mapping class group of the 6-holed sphere, where the product

D(γ1) ◦D(α2) ◦D(α3) ◦D(α4) ◦D(α5) ◦D
3(γ5)

is isotopic to the product of Dehn twists about 5 curves, which is precisely the
daisy relation for the 6-holed sphere. Since the triangulation (2, 2, 2, 1, 4) is obtained
from (1, 2, 2, 2, 1) by flips along the contiguous sequence d3, d2, d1 of distinguished
diagonals in (1, 2, 2, 2, 1), the linear plumbing graph for this rational blowdown
has weights −6,−2,−2, by Proposition 43.
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8.4. Example D. Let (p, q) = (45, 26). Then p

p−q
= [3, 2, 3, 2, 3]. The contact 3-

manifold (L(45, 26), ξcan) has 4 distinct minimal symplectic fillings, up to diffeo-
morphism, which are parametrized by the set

Z5(
37

37−10
) = {(1, 2, 2, 2, 1), (2, 1, 3, 2, 1), (1, 2, 3, 1, 2), (3, 1, 3, 1, 3)}.

The graph G45,26
5 is a subgraph of G81,47

5 which we depicted in Figure 17, and the
discussion in Example B, applies verbatim here.

Remark 53. The interested reader may compare Examples B, C, D above, with the
examples in [5, Section 4.1], where they use sequences of rational blowdowns and
symplectic antiflips to obtain minimal symplectic fillings from the minimal resolu-
tion.

8.5. Example E. Let (p, q) = (140, 41). Then p

p−q
= [2, 2, 4, 2, 4, 2, 2]. The contact

3-manifold (L(140, 41), ξcan) has 8 distinct minimal symplectic fillings, up to dif-
feomorphism, which are parametrized by the set Z7(

140
140−41

) =

{(1, 2, 2, 2, 2, 2, 1), (2, 1, 3, 2, 2, 2, 1), (1, 2, 3, 1, 3, 1, 2), (1, 2, 2, 2, 3, 1, 2)

(2, 1, 4, 1, 3, 2, 1), (2, 1, 3, 2, 3, 1, 2), (1, 2, 3, 1, 4, 1, 2), (2, 1, 4, 1, 4, 1, 2)}.

The graph G140,41
7 is depicted in Figure 19.

(1, 2, 2, 2, 2, 2, 1)

(2, 1, 3, 2, 2, 2, 1) (1, 2, 3, 1, 3, 1, 2) (1, 2, 2, 2, 3, 1, 2)

(2, 1, 4, 1, 3, 2, 1) (2, 1, 3, 2, 3, 1, 2) (1, 2, 3, 1, 4, 1, 2)

(2, 1, 4, 1, 4, 1, 2)

FIGURE 19. The rational blowdown graph G140,41
7 .

We claim that there are no symplectic rational blowdowns between these 8 sym-
plectic fillings other than the ones represented by the edges in Figure 19. To prove
our claim, we first show that there is no height 3 rational blowdown from the
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canonical symplectic filling u7 = (1, 2, 2, 2, 2, 2, 1). To see this, we first observe
that the symplectic filling u7 is diffeomorphic to the linear plumbing with weights
−4,−2,−4,−2,−4 (since p

q
= [4, 2, 4, 2, 4]) and hence the lattice H2(u7,Z) is even.

Thus, the linear plumbing with weights −2,−5,−3 cannot be embedded into u7.
Next we rule out any possible embedding of the linear plumbing with weights
−6,−2,−2 into u7 by showing that the linear plumbing with weights −2,−2 can-
not be embedded into u7. On way to see the latter is as follows. We represent,
as described in [10, Section 2], the classes in H2(u7,Z) as nullhomologous linear
combinations of the vanishing cycles of the planar Lefschetz fibration on canonical
symplectic filling u7. Then we use the fact that any class whose square is −2 is null-
homologous linear combination of only two vanishing cycles with ±1 coefficients
to derive a contradiction.

It is easy to see that there are no height 2 rational blowdowns from the canonical
symplectic filling u7 since H2(u7,Z) is even and hence the linear plumbing with
weights −2,−5 cannot be embedded into u7.

According to the classification of minimal symplectic fillings, there are only
3 distinct fillings, namely (2, 1, 3, 2, 2, 2, 1), (1, 2, 3, 1, 3, 1, 2), (1, 2, 2, 2, 3, 1, 2), which
can be obtained from u7 by a single symplectic rational blowdown. In fact, these
correspond to the 3 distinct −4 curves in u7. We now show that none of these 3 fill-
ings contains an embedded linear plumbing with weights −2,−5. The lattices for
the symplectic fillings, (2, 1, 3, 2, 2, 2, 1), (1, 2, 3, 1, 3, 1, 2), (1, 2, 2, 2, 3, 1, 2) are given,
respectively, by




−7 2 0 0
2 −4 1 0
0 1 −2 1
0 0 1 −4


 ,




−4 1 0 0
1 −4 −4 −1
0 −4 −7 −2
0 −1 −2 −4


 ,




−4 1 0 0
1 −2 1 0
0 1 −4 2
0 0 2 −7


 .

One can check that there is no class of square −5 in the first and the third lattices,
whereas there is no class of square −2 in the second lattice.

In particular, we obtain the following result.

Proposition 54. The rational blowdown depth of the minimal symplectic filling (2, 1, 4,
1, 4, 1, 2) of (L(140, 41), ξcan) is equal to dpt((2, 1, 4, 1, 4, 1, 2)) = 3.
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