UNBRAIDED WIRING DIAGRAMS FOR STEIN FILLINGS OF LENS SPACES
MOHAN BHUPAL AND BURAK OZBAGCI

ABSTRACT. In a previous work([2], we constructed a planar Lefschetmafibn on each
Stein filling of any lens space equipped with its canonicaitaot structure. Here we de-
scribe an algorithm to draw amnbraidedwiring diagram whose associated planar Lef-
schetz fibration obtained by the method of Plamenevskays#arttston[[10], where the
lens space with its canonical contact structure is viewdtasontact link of a cyclic quo-
tient singularity, is equivalent to the Lefschetz fibratioa constructed on each Stein filling
of the lens space at hand. Coupled with the work of Plamemgtasiind Starkston, we ob-
tain the following result as a corollary: The wiring diagrara describe can be extended to
an arrangement of symplectic graphical disk€ihwith marked points, including all the
intersection points of these disks, so that by removing thegr transforms of these disks
from the blowup ofC? along those marked points one recovers the Stein fillinggaaith
the Lefschetz fibration. Moreover, the arrangement is edl#& the decorated plane curve
germ representing the cyclic quotient singularity by a sthgpaphical homotopy.

As another application, we set up an explicit bijection bwthe Stein fillings of any
lens space with its canonical contact structure, and thadvifibers of the corresponding
cyclic quotient singularity, which was first obtained byrmiéthi and Popescu-Pampu [8],
using different methods.

1. INTRODUCTION

In their recent work, Plamenevskaya and Starkston [10] skiawat every Stein filling
of the link of a rational surface singularity with reduceddamental cycle, equipped with
its canonical contact structure, can be obtained from a goration of symplectic graph-
ical disks inC? with marked points including all the intersection pointsteése disks, by
removing the union of the proper transforms of these dists fthe blowup ofC? at the
marked points. Their purely topological proof relies oneditem of WendI[11], which im-
plies that each Stein filling of the contact singularity limikthe type above admits a planar
Lefschetz fibration oveP?, since the contact link itself is supported by a planar opmokb
([2],[2]), and moreover, the Lefschetz fibration corresg®mo a positive factorization of
the monodromy of this open book. In their proof, Plameneyakand Starkston developed
a method to reverse-engineer a braided wiring diagram giodwany such factorization,
and then extended this diagram to an arrangement of synplgetphical disks which,
in turn, gives the Stein filling along with the Lefschetz fitioa via the method described

above (see Sectidn 2 for more details of their construction)
1
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In the present paper, we focus on cyclic quotient singudsrit-a subclass of ratio-
nal surface singularities with reduced fundamental cydtas well-known that the ori-
ented link of any cyclic quotient singularity is orientatipreserving diffeomorphic to
a lens spacd.(p, q). Let &, denote the canonical contact structure on the singularity
link L(p,q). In [7], Lisca classified the minimal symplectic fillings dfig contact3-
manifold (L(p, q), £.qn), Up to diffeomorphism, and also showed that any such fillihg o
(L(p, q),&an) is in fact a Stein filling. In[[2], we constructedpanar Lefschetz fibration
W — D? on each Stein fillingV of (L(p, q), £.an), by explicitly describing the ordered
set of vanishing cycles on a disk with holes. In this paper,pumary goal is to describe
an algorithm to draw a wiring diagram, which turns out tousdraided that corresponds
to each of these planar Lefschetz fibrations via the work afrféinevskaya and Starkston.

Theorem 1. There is an algorithm to draw an explicit unbraided wiringdram whose as-
sociated planar Lefschetz fibration obtained by the metti@comenevskaya and Starkston
[10] is equivalent to the planar Lefschetz fibratidh — D? constructed by the authofZ]

on each Stein fillingV of the contac8-manifold(L(p, ¢), £can)-

As we mentioned in the first paragraph, Plamenevskaya amkisBia described an al-
gorithm (seel[10, Section 5.4]) to obtain a braided wiringgdam from the ordered set of
vanishing cycles of a planar Lefschetz fibration, by revensgineering. Their algorithm
involves many choices (see [10, Remark 5.7]) and althougtowveot rely on their reverse-
engineering algorithm here, we shavdirectly that by appropriate choices, one can obtain
“unbraided” wiring diagrams, which means that all the bsaidthe diagram can be chosen
to be the identity.

The article of Plamenevskaya and Starkston was admittedlyired by the work of
de Jong and van Stratenl [5], who studied the Milnor fibers agfdrchation theory of
sandwiched singularities—which includes rational swfamgularities with reduced fun-
damental cycle. In their work, deformation theory of a scefaingularity in the given
class is reduced to deformations of the germ of a reducila@eepturve representing the
singularity.

In particular, to any cyclic quotient singularity germ, deg and van Straten associate
a decorated germ of a reduced plane curve singulérityC, U --- U C,, C (C2,0) with
smoothirreducible branches, where the decoration on €gdls a certain positive integer,
which we omit here from the notation for simplicity. The oanee of de Jong and van
Straten’s construction is that there is a bijection betweee-parameter deformations of
the cyclic quotient singularity and “picture deformatidn$ C representing that singularity
(see Sectiohl2 for more details of their construction).

Moreover, Plamenevskaya and Starkston [10, Propositijpéxtends any given braided
wiring diagram (viewed as a collection of intersecting @gwnR x C) to a collection of
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symplectic disks inC x C. Consequently, as a corollary to Theorem 1, we obtain the
following result coupled with [10, Proposition 5.8].

Corollary 2. For each Stein fillingi/” of the contacB-manifold (L(p, q), {can), there is
an explicit collection of symplectic graphical disks, ..., T, in C2, with marked points
D1y .-, pm C U, I, which include all the intersection points of these disksttsat by

removing the union of the proper transforﬁg, ..., I, ofI'y,..., T, from the blowup
of C? at these marked points we obtdili along with the Lefchetz fibration mentioned in
Theorenill. Moreover, the collection of symplectic graphitisksT';,....I", is related
to the decorated plane curve gein= C, U --- U C,, C (C?,0) representing the cyclic
guotient surface singularity at hand by a smooth graphiaahletopy.

For each Stein fillingV of (L(p, q), .an), the symplectic graphical disk arrangement
I :=TIU---UTl, with marked pointg;,...,p, C I' in C? described in Corollari12
determines immediately the x n incidence matrixZ(I", {p,}), defined so that it§:, j)-
entry isl if p; € I';, and0 otherwise. Since there is no canonical labelling of the {sqin
in general, the incidence matrix is only defined up to permmneof the columns.

Corollary 3. For each Stein fillingi" of (L(p, q),..n), there is an iterative algorithm
to obtain the incidence matriX(I", {p;}) for the symplectic graphical disk arrangement
[:=TI,U---Ul, with marked point®, ..., p, C I'in C? described in Corollary 2.

As a matter of fact, one can read off the incidence matrixatlyerom the wiring dia-
gram from which the symplectic disk configuration arises.e&glained in[[10, Section 6]
and [5, Section 5], the incidence matf@XI', {p;}) determines the fundamental group, the
integral homology and the intersection form1df, as well as the first Chern class of the
Stein structure oV

Note that each Milnor fiber of the cyclic quotient singulang a Stein filling of its
boundary—which is the linl.(p, ¢) of the singularity, equipped with its canonical contact
structure,,,,. In [8], Némethi and Popescu-Pampu showed that there ixlicie one-
to-one correspondence between Stein fillingg bfp, ), £..,) and Milnor fibers of the
corresponding cyclic quotient singularity, proving in fiewlar a conjecture of Lisca [7].
As another application of Theorém 1, we obtain an alternateff their result formulated
as Corollary 4. We say that two (smooth) disk arrangemg@htgp; }) and(I”, {p}) in C*
are combinatorially equivalenif their incidence matrices coincide up to permutation of
columns, i.e. up to relabelling of the marked points.

Corollary 4. For each Stein fillingiV of (L(p, q),&.an), the arrangement of symplectic
graphical disks(I', {p,}), described in Corollary12, is combinatorially equivalewt the

arrangement of the smooth branches of a picture deformatidine decorated plane curve
germ( representing the corresponding cyclic quotient surfaogsiarity, described by de
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Jong and van Stratef®]. This equivalence gives an explicit bijection betweemSiings
of (L(p, q), £.an) @nd Milnor fibers of the corresponding cyclic quotient sitzgity.

In other words, the wiring diagrams we obtain via Theotémm la viewed as picture
deformations of the decorated plane curve germ represgtEnassociated cyclic quotient
singularity. In Figuré il below, we summarized the corresiemce that takes each Stein
filling of (L(p, q), £.an) Qiven by Lisca to the Milnor fiber of the associated cyclic tiemat
singularity described by de Jong and van Straten via a gicteformation of the decorated
plane curve representing the singularity.

Stein filling --------------------- > Milnor fiber
Lefschetz fibration picture deformation

l T

. ) Configuration of symp. . .
—— Incidence matrix
Wiring diagram ——e- graphical disks irC?

FIGURE 1. From Lisca to de Jong and van Straten

It is well-known that for any contact singularity linl.(p, q), {an), the Milnor fiber of
the Artin smoothing component of the corresponding cyclioteent singularity gives a
Stein filling which is Stein deformation equivalent to theeasbtained by deforming the
symplectic structure on the minimal resolution (sele [3]Xeé singularity. In addition,
according to([5], there is a canonical picture deformaticedled theScott deformation
of the decorated plane curve germ which corresponds to thie #moothing. As a final
application of Theorernl1, we obtain a wiring diagram thatespnts the combinatorial
equivalence class of the Scott deformation.

Corollary 5. For the Milnor fiber of the Artin smoothing component of thelicyquo-
tient singularity, the arrangement of symplectic diskegiin Corollary2, arising from the
wiring diagram described in Theorelm 1, is combinatorialyuazalent to the Scott defor-
mation of a decorated plane curve representing the singpylar

2. RATIONAL SINGULARITIES WITH REDUCED FUNDAMENTAL CYCLE, PICTURE
DEFORMATIONS, AND BRAIDED WIRING DIAGRAMS

In [8], Némethi and Popescu-Pampu showed that there is@itiebijective correspon-
dence between Stein fillings of the link of a cyclic quotieimgsilarity and Milnor fibres
of smoothing components of the given singularity, as cdojed by Liscal[7]. As cyclic
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guotient singularities are examples of sandwiched simgeta de Jong and van Straten’s
picture deformation construction (sée [5]) can be used sorilge these Milnor fibres. We

give a brief description of the construction of de Jong and Saaten here. As the theory
is easier to describe in the case of rational singularitigls mduced fundamental cycle, a
class which contains cyclic quotient singularities, wd vasktrict attention to these.

Let (X, x) be the germ of a rational singularity with reduced fundarakeycle. De Jong
and van Straten associate (&, =) a, possibly nonunique, decorated germ of a reduced
plane curve singularit¢ = C; U --- U C, C (C?,0) with smoothirreducible branches.
Each such singularity can be resolved by a finite sequendewtips. For each branal;,
let m; denote the number of timés;, or its proper transform, is blown up in the minimal
resolution. For example, if consists of a collection of curves intersecting (pairwise)
transversally a0, thenm,; = 1 for all .. The decoration o consists of am-tuple! =
(I1,...,1,) of positive integers such thgt> m; for eachi. Given such a decorated curve
(C,1), one can recover the corresponding surface singularitglimsis: Take the minimal
embedded resolution @f and iteratively blow up the proper transform ©f (I, — m;)-
times on the preimage of for each:. Under the condition that > m,; for eachs, the
set of exceptional curves that do not meet the proper tremséd C will be connected.
Collapsing them then gives the corresponding surface kngu

Given a decorated curvg, 1), letC = C; U --- U C, denote the normalization «f
(which in our present situation is just the disjoint uniorited irreducible components 6j.
Geometrically, one may think of the decoratibas a collection of; marked points oit;,
for eachi, all concentrated on the preimage of the singular point. diteome of de Jong
and van Straten’s construction is that there is a one-toeonespondence between one-
parameter deformations 0K, =) and “picture deformations” ofC, 7). Roughly speaking,

a picture deformatiorof (C, ) consists of a-constant deformatiod® = C; U --- U C?
of C, which in the present situation means that the branché€sané deformed separately
and not allowed to merge, together with a redistribufioof the marked points so that we
have exactlyi; marked points orC? for eachi, whereCs, ..., C® denote the irreducible
components of the normalizatia@hf of C*. HereC® = C and we require that fos £ 0
the only singularities o€* are ordinaryk-tuple points, for varioug, that is, transversal
intersections ok smooth branches, and that each such multiple point is maikezte may
be additional “free” marked points on the branche§ofThe Milnor fibre of the smoothing
associated tdC?, [*) can then be constructed by blowing up all the marked poiaksng
the complement of the proper transformsdf, . . ., C; and smoothing corners. Here the
Milnor fiber will be noncompact, but by working in a small bakntered at the origin in
C? we can obtain compact Milnor fibers.

The topological information from picture deformations ¢enconveniently extracted by
using the notion of braided wiring diagrams. These werediced by Cohen and Suciu
[4] in their study of complex hyperplane arrangements anck lmeen used fruitfully by
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Plamenevskaya and Starkstonl|[10] in their investigatiomnaxpected Stein fillings in the
case of rational surface singularities with reduced funelatad cycle. We briefly describe
these next.

A braided wiring diagramis a collection of curveg;: [0,1] - R x Cfor1 <i < n,
calledwires such thatf;(t) € {t} x C. At finitely many interior points,...,¢,, a
subcollection of the wires may intersect with the remairbegg disjoint, but at each such
point the wires intersecting are assumed to have distingfetat lines. We will make the
further assumption that there is a numbes 0 such that the positions of the wires above
the points), 1 andt; 4+ ¢ take the same given valueslinhC C and the restriction of each
wire f; to (¢; — ¢,t; + ) is linear. Any braided wiring diagram can be made to satisiy t
assumption by a homotopy of braided wiring diagrams. Therpibrtions of the braided
wiring diagram betweem;, — ¢ and¢; + ¢ can be specified by declaring which adjacent
wires intersect and on the complementary intervals theswiray be braided. Moreover,
any wiring diagram will be presented by its projection oftoc R € R x C, where the
secondR is the real part ofC.

We now describe how to obtain a braided wiring diagram fromctéupe deformation
(C#,1%). By choosing coordinates @f* generically, we may assume that edchis graph-
ical, thatis,C? = {(z,y) € C*|z € D,y = fi(x)} for some complex functiotf;, where
D is a small disk inC centered ab. Fors > 0 sufficiently small, it follows that each
C? is graphical. Let),...,n, denote the images of the intersection point&ef. .., C?
under the mapr,: C> — C given by projecting onto the first coordinate and choose a
smooth curvey: [0, 1] — D whose interior passes through these points suchytligthas
nonpositive real part for all. Then(C; U---U C?) N7, ! () is a braided wiring diagram.

Next we review how Plamenevskaya and Starkston constrydéedr Lefschetz fibra-
tions based on a configuration of smooth disk€see[10, Lemma 3.2]. Ldt,, ..., T,
be smooth disks if©? which are graphical with respect to the projection Assume that
whenever two or more of these disks meet at a point, theysetetransversally and posi-
tively with respect to the orientation on the grdphinduced from the natural orientation on
C. Letpy,...,pn, be the marked points dn, I'; which include all the intersection points,

and letll: C2#mCP? — C? be the blow-up at the poins, . . ., pm. If I'1, ..., T, denote
the proper transforms afy, ..., I, then

7y o Il: C2#mCP?\ (Iy,...,I,) = C

is a Lefschetz fibratiowhose regular fibers are punctured planes, where each penctu
corresponds to a compondnt There is one vanishing cycle for each paint which is
a curve in the fiber enclosing the punctures that correspotitet components; passing
throughp;.

Moreover, restricting to an appropriate Milnor ball @ that contains all the points
1, ..., pm ONE obtains a Lefschetz fibration whose fiber is a disk witlesiolvhere the
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holes correspond to the componelitsind the vanishing cycles correspond to the pagints
in the same way as described above. Furthermore, fuheettasCy, . . ., C? with marked
points are the result of a picture deformation of a germ aasatto a surface singularity,
the Lefschetz fibration constructed as above is compatilite the complex structure on
the Milnor fiber of the corresponding smoothing.

2.1. From wiring diagrams to planar Lefschetz fibrations. Here we outline the method
of Plamenevskaya and Starkston that gives a set of ordereslwag cycles associated to
any braided wiring diagram, which in turn determines a pldredschetz fibration on the
associated Stein fillings; see [10, Section 5.2]. In thisgpape will only deal with wiring
diagrams without any braids and we will call thambraidedwiring diagrams. In the
following, we describe their method for the case of unbraid&ing diagramsWe should
emphasize that our conventions will be different from trad$&0], for the purposes of this
paper.We denote the marked points (consisting of intersectiontp@nd free points) hy;,
and enumerate them according to their geometric positmm fight to left, as illustrated
in Figurel2.

Xs
L4

X
>@2

FIGURE 2. An example of aminbraidedwiring diagram without any free points.

For each marked point; in the wiring diagram, there is a convex curder;) in Dy,
enclosing a certain set of adjacent holes, which is detexdhars follows.

Definition 6. (Convex curve assigned to a marked pofatippose that the marked point
x4 IS a simultaneous intersection point of some geometricahsecutive wires in a given
wiring diagram. The convex curvgz,) encircling the adjacent holes whose geometric
order from the top inD,, coincides with the local geometric order of the wires siré-
ously intersecting at that marked point is called the corauaxe assigned ta,. If z, is a
free marked point on a single wire, then the convex cudfwg) assigned ta; is the curve
which is parallel to a single interior boundary component/gf whose order from the top
coincides with the local geometric order of the wire.

For example, in Figurel 2, the geometrically top four wireeigect at the marked point
x4; the geometrically top two wires intersect at the markeahpoj; the geometrically bot-
tom two wires intersect at the marked paigtand the geometrically second and third wires
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intersect at the marked point. It follows that the convex curvegx,), d(z3), d(x2), d(z1)
depicted in Figurél3 are assigned to the marked paints;, x,, z,, respectively, in Fig-
urel2.

FIGURE 3. Convex curves iD; assigned to the marked points in Figlre 2.

For each marked point, in the wiring diagram, there is a counterclockwise halfstwi
A(zs): Dy — Dy, which is determined as follows.

Definition 7. (Counterclockwise half-twist corresponding to a markethf)d@ he counter-
clockwise half-twist\(z,) along the subdisk i, enclosed by the convex cur¥ér;) is
called the counterclockwise half-twist corresponding o

Suppose that a wiring diagram Hawsvires and- marked points:,., z,_1, . .., x1, reading
from left to right. According to[[10], for each < s < r, there is a vanishing cycl€ (x)
in D, associated to the marked point which is determined as follows.

Definition 8. (Vanishing cycle associated to a marked pold) each2 < s < r, the
vanishing cyclé/(z,) associated to the marked point is the curve inDy, given as

A(z1) 0 -0 Aze-1)(6(xs)),
andV(lj) = (5(371)
For example, the vanishing cycles for the marked points guife[2 are calculated as
follows. The curveV (z,) = A(x1) o A(xy) o A(x3)(0(x4)) is illustrated in Figureé 4.

Similarly, V(x3) = A(z1) o A(z2)(0(x3)) is illustrated in Figuréls. Finally, the vanishing
CyCleV({L'g) = A(l’l)(é(ﬂfg)) = 5(1’2) andV(IL'l) = 5(1’1) by definition.

3. PLANAR LEFSCHETZ FIBRATIONS ONSTEIN FILLINGS OF LENS SPACES

3.1. Symplectic fillings of lens spacesin [7], Lisca classified the minimal symplectic
fillings of the contacB-manifold (L(p, q), {can), UP to diffeomorphism. It turns out any
minimal symplectic filling of(L(p, q), £.n) IS in fact a Stein filling. We first briefly review
Lisca’s classification [7] of Stein fillings dfL(p, q), £can), Uup to diffeomorphism.
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~_»
Alrs) A7) A(m)

FIGURE 4. Starting fromj(z,4), we apply a counterclockwise half-twist on
the subdisk enclosed by the dotted curve, at each step, granygleft to
right.

e e

FIGURE 5. Starting fromj(x3), we apply a counterclockwise half-twist on
the subdisk enclosed by the dotted curve, at each step, franygleft to
right.

Definition 9. (Blowup of a tuple of positive integer§pr any integerr > 2, a blowup of
anr-tuple of positive integers at théh term is a mapp;: Z', — Z'" defined by
(N1, oy Mgy ey ny) = (R, oy, ng + 1, L + 1, nggo, .o ny)
foranyl <i<r—1andhby
(nyy...,ne) = (ng, ..., ne_g,n,. + 1, 1)

wheni = r. The case wheh < i < r — 1 is called an interior blowup, whereas the case
i = r is called an exterior blowup. We also say tti@} — (1, 1) is the initial blowup.

Suppose thgt > ¢ > 1 are coprime integers and let

bbb = ————
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be the Hirzebruch-Jung continued fraction, whiere> 2 for 1 < i < k. Note that the
sequence of integef$,, b, . . ., by } is uniquely determined by the pdi, q).

For anyk > 2, ak-tuple of positive integerény, . . ., ny) is calledadmissibléf each of
the denominators in the continued fractien, . . . , n,| is positive, where we do not assume
thatn; > 2. For anyk > 2, let 2, C Z* denote the set of admissibletuples of positive
integersn = (ng,...,nx) such thatin,,...,ny] = 0 and letZ; = {(0)}. As a matter
of fact, anyk-tuple of positive integers i€, can be obtained fron0) by a sequence of
blowups as observed by Liscd [7, Lemma 2]. Note that the oa$sible blowup of0) is
the initial blowup(0) — (1,1). Let

Z( ) =A{(n1,....nk) € 2, [0 <y < b fori=1,... k}.

Next, for everyk-tuplen = (ni, ..., ny) € Zi(;£;), we describe d-manifold W, ,(n)
whose boundary is orientation-preserving diffeomorphbié.tp, ¢). We start with a chain
of unknots inS? with framingsn,, n., ..., n., respectively. It can be easily verified that
the result of Dehn surgery on this framed link, which we denétn), is diffeomorphic
toS' x 52, LetL = (¥, L, denote the framed link iV (n) depicted in red in Figure 6,
where eachl; hasb; — n; components.

Ng—1 ng
—1—1 -1 —1 1-1 -+1-1 —-1-1-1
—_— ~—
bl —ni b2 —n2 b1 —ni—1 br —nyg

FIGURE 6. The relative handlebody decomposition of theanifold 17, ;) (n).

Since N(n) is diffeomorphic toS* x S?, one can fix a diffeomorphism : N(n) —
S1x S2. By attaching-handles tab! x D3 along the framed link(L) C S* x S?, we obtain
a smoothi-manifold IV, ,(n) whose boundary is orientation-preserving diffeomorphic t
L(p,q). As noted by Lisca, the diffeomorphism type @f, ,(n) is independent of the
choice of¢ since any self-diffeomorphism ¢f! x S? extends te5! x D3.

According to Lisca, any minimal symplectic filling (in facteédn filling) of (L(p, ¢), &can)
is orientation-preserving diffeomorphic 1, ,(n) for somen € Z, ().

3.2. Planar Lefschetz fibrations on Stein fillings. In [2], we described an algorithm to
construct a planar Lefschetz fibrati®i, ,(n) — D?, based on any given blowup sequence

(0)—>(1,1)—>~-~—>n:(n1,...,nk)eZk(pf ).
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Here we briefly review our algorithm, which consists of twotpgstabilizationandsurgery
that gives an ordered set of vanishing cycles on a disk iitbles which is the fiber of our
Lefschetz fibratiori?, ,(n) — D?. We begin by describing the first part of our algorithm
which we call the stabilization algorithm.

3.2.1. The stabilization algorithmFor any positive integet, let D, denote the disk with
r holes. We assume that the holes are aligned horizontallip,oand we enumerate the
holes onD, from left to right asH;, H,, ..., H,.

The initial step of the algorithm corresponding(t is the diskD; with no vanishing
cycle, as depicted on the top in Figlide 7. Recall that the bldwup starting from(0) is
the initial blowup(0) — (1,1). The corresponding fiber is the digk with one vanishing
cycle oy, which is parallel to the boundary @f,, as depicted in the middle in Figuré 7.
This is a stabilization of the previous step, where we haditimulusD; with no vanishing
cycle. Depending on the type of the next blowup, we proceddlksvs.

l initial blowup

@ O
interior bIOWUB/ D Yﬁterior blowup

O @\@) (0 @O0

(2,1,2) (1,2,1)
FIGURE 7. Stabilizations depending on the type of the blowup.

If we have an interior blowup at the firstterfh, 1) — (2, 1, 2), thenH, “splits” into two
holes, where the new holg; is placed to the right off,. The curven; becomes a convex
curve enclosing{, and H; in Ds. We introduce a new vanishing cyal@ which encloses
H, andH; in D5 as shown at the bottom left in Figure 7. We can view the intotida of
ap as a stabilization of the previous step.

On the other hand, if we have an exterior blowup1) — (1,2,1), then we simply
introduce a new hold7; to the right, and the new vanishing cyalg is parallel to the
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boundary ofH; in D3 as shown at the bottom right in Figure 7. Again, we can view the
introduction ofa, as a stabilization of the previous step.

Now suppose that we have a set-ef 1 vanishing cycles;, as, . .., a,_; on a disk with
r holes corresponding to some blowup sequence

0)—(1,1) = -+ = (ny,...,n,).

Depending on the type of the next blowup we insert a new hadeistinoduce a new van-
ishing cyclea, as follows.

If we have an interior blowup at théh term, forl < i < r—1, then the holé{;,, “splits”
into two holes, where the new holé, ., , is placed to the right of{;,; in the resulting disk
D, 1. We introduce a new vanishing cyele which encloses the hold$,, H,, ..., H; and
the new holeH; ., in D,;. We can view the introduction af, as a stabilization of the
previous step.

On the other hand, if we have an exterior blowup, then we sifmglert a new holé,
to the right, which is the last hole in the geometric ordenfrihe left in the resulting disk
D, and the new vanishing cycle. is parallel to the boundary af,,,. Again, we can
view the introduction oty, as a stabilization of the previous step.

Next, we describe the second part of our algorithm which viglwa surgery algorithm.

3.2.2. The surgery algorithmThe surgery algorithm is based on the lihk= Ule L;,
which is used to defin&/, ,(n). The vanishing cycles in this subsection will be mutually
disjoint and hence their order does not matter. So we carmitdesal the vanishing cycles
as a set of curves on the digk, with k& holes.

Definition 10. (The y-curves)For eachl < i < k, let 4; be the convex curve ob;
enclosing the hole&l , H,, ..., H;.

Then the set of vanishing cycles in this part of the algorithm

{7177717727772777]@77]6}7
. S\ / N J/

Vv Vv
bi—n1 by —no bp—ng

where eachy; appear$; — n; times in the set. In particular, #f = n;, then~; is not in the
set of vanishing cycles.

3.2.3. Total monodromyThe fiber of the planar Lefschetz fibratiéti, ,(n) — D? is the
disk D, with & holes, wheré: is the length of the continued fracti%lﬁz = [b1,by. .., 0.
The set of vanishing cycles consists of the curegsns, . .., a1 coming from the sta-
bilization algorithm andy;, s, . . ., 7 (each with a multiplicity) coming from the surgery
algorithm. LetD(«) denote the right-handed twist along a simple closed curem a
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surface. The total monodromy of the planar Lefschetz fibrdiV, ,(n) — D? is given as
the following composition of Dehn twists along the vanighaycles

D(e)D(@) - D(ey—1) D" "™ (1) D™ "2 () - - - D" ().
In Lemma_ 11 below, we describe another planar Lefschetziitoraniv,, ,(n).

Lemma 11. Let f : W,,(n) — D? be the planar Lefschetz fibration we constructed in
[2]. The total space of the planar Lefschetz fibration obtainetelersing the order of the
vanishing cycles of, while taking their mirror images is diffeomorphic 1o, ,(n).

Proof. The result follows from the fact that such a transformatibthe vanishing cycles
can be achieved by rotating the absolute handlebody diagiduning the planar Lefschetz
fibration constructed ir [2]. To see this, consider for exbmpe handlebody diagram in
[2, Figure 7], which is depicted on the left-hand side in Fej8.

[ ] 4 p o l | | | I
TP
I h (__<|—|—|>>

SANEN: c: ::)
=D Rotate by180°‘ \—|/_ -

= d~11D
= S
o= =P
=l—l——b5 l j

| | | | | b 3 ®

FIGURE 8. By rotating the handlebody diagrar®0° in a directionnormal
to the page, we obtain the mirror images of the vanishingesytl reverse
order.

By rotating this handlebody diagran®0° in a directionnormalto the page, we get the
handlebody diagram on the right-hand side whose total Spatdl the same. But this new
handlebody diagram corresponds to a planar Lefschetzibbravhere the mirror images
of the vanishing cycles appear in reverse order. Note that Wwe view the base disk,
“horizontally” and the mirror image of a curvea C D, is defined to be the reflection
of a along thez-axis, once the holes i, are aligned horizontally along theaxis. This
definition of mirror image, of course, coincides with the mirimage in a verticaD,, by
rotating the horizontaD,, clockwise by90°. O



14 MOHAN BHUPAL AND BURAK OZBAGCI

3.3. An example. Forp = 56 andq = 17, we havei [2,2,5,2,3]. The5-tuple

56 — 17
= (2,1,4,1,2) belongs taZs(:%~) since we have the blowup sequence

(0) — (1, 1) (1,2, 1) — (2, 1,3, 1) — (2, 1,4, 1,2)
and hence we conclude tHatsq 17)((2, 1,4, 1, 2)) is a Stein filling of the contad&-manifold
(L(56,17), &can)- The fiber of the planar Lefschetz fibration
W(56717) (2, ]_, 4, ]_, 2) — D2
is the disk D5 with 5 holes, and to obtain the vanishing cycles a-, a3, oy coming
from the stabilization algorithm, we start from the st@p2, 1) which is already shown

at the bottom right in Figurie 7 and apply the stabilizatigyoaithm to the interior blowups
(1,2,1) — (2,1,3,1) — (2,1,4,1,2) as depicted in Figuig 9.

@ .Ozl ’012 — 042

al

(1,2,1)
(2,1,3,1)

(2’ ]‘? 4’ ]" 2)

FIGURE 9. The vanishing cycles, as, a3z, ay coming from the stabiliza-
tion algorithm.

Note thatb1 —ny =0, Wherea§92 —ng =by3 —n3 =by —ny = by —ng = 1, which
implies that the set of vanishing cycles coming from the sor@lgorithm in this case is
Y2, 73,74 @and~s as shown in Figurg10.

Consequently, the total monodromy is given as the follows

D(0n)D(crz) D(ers) D(0ra) D(72) D(73) D(74) D(75).-
Remark 12. By Lemmalll, there is a planar Lefschetz fibraiitgs 17 (2, 1,4, 1,2) — D?
whose monodromy factorization is given by

D(7v5)D(74) D(7y3) D(7v2) D(@s) D(@i3) D () D (o).
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FIGURE 10. The vanishing cycles,, v3, 74, 75 coming from the surgery algorithm.

4. UNBRAIDED WIRING DIAGRAMS

4.1. The blowup algorithm. In this subsection, we describe an algorithm to construct
an unbraided wiring diagram corresponding to a blowup secgistarting from the initial
blowup (0) — (1, 1). The wiring diagram corresponding (0) is a single wirew; without

any marked points and the wiring diagram corresponding to), consists of two parallel
wires{wy, wy} SO thatw, is on top without any marked points, and has a single marked
pointz;. The next step in the algorithm depends on whether we hav&@mar or exterior
blowup that follows the initial blowug0) — (1,1).

If we have an interior blowup at the first terfh, 1) — (2, 1, 2) we introduce a new wire
ws, Which is initially beloww, on the right-hand side of the diagram and as it moves to the
left, it goes through the marked point on w,, but otherwise remains parallel t@, and
then intersects); at a new marked point,, which is to the left ofr;. This diagram with
three wires{w,, wy, w3} corresponds t62, 1, 2), which we depicted in Figufe 1L.1.

0 —— @11 (2,1,2)
w1 _— w1
T T2
—_——— W9y ()
€1

w3

FIGURE 11. Wiring diagrams corresponding to the blowup sequébce
(1,1) = (2,1,2).

On the other hand, if we have an exterior blowupl) — (1,2,1), we insert in the
diagram a new wirevs which is right beloww, and parallel to it. We place a marked
point z, onws so thatz, is to the left ofx;. This diagram with three wire§w;, ws, w3}
corresponds t01, 2, 1), which we depicted in Figufe 1.2.

Now suppose that we have an unbraided wiring diagremonsisting of- wires{w, ws,
..., w,} corresponding to some blowup sequence starting from thialiblowup (0) —
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(0) (1,1) (1,2,1)
w1 — U | — )]
X 4o
—_———— Wy w2
Z2
w3

FIGURE 12. Wiring diagrams corresponding to the blowup sequébce
(L1) = (1,2,1).

(1,1) and ending with some-tuple of positive integers. We would like to emphasize
that the indices of the wires in the 98t above indicate the order in which the wires are
introduced into the diagram. Depending on the type of theé hlxwup we insert a new
wire in YW and adjust the diagram accordingly as follows.

Suppose that we have an interior blowup at itieterm, for somd < i < r» — 1. Let
w; € W be the(i + 1)st wire with respect to thgeometric orderingf the wires on the
right-hand side of the diagram, and &f; denote the subset oV consisting of all the
wires which appears before; in this ordering. In other words); is the set of the top
wires in the geometric ordering of the wires on the right<hside of the diagram. Now we
introduce a new wire, named, ., into the diagram, which is initially right below; on
the right-hand side of the diagram and as it moves to thede#ts through all the marked
points onw; but otherwise remains parallel to;, and then we insert a new marked point
x, onw,,; Which is the simultaneous intersection»f,; and all the wires inV;. We
place the marked point, to the left ofz,_;. For this to work, we need to know that the set
W; U {w,,1} of wires is geometrically consecutive on the left-hand sideich we verify
in Lemma_1B below, where we refer to this step in the algoridsnthelast twist

On the other hand, if we have an exterior blowup, we insertvawie w,., below all
the wires in)V with no intersection points with the other wires, and plasingle marked
pointz, onw, 1, which is to the left ofz,_;.

We call this procedure the blowup algorithm for wiring diagrs. Note that in the re-
sulting wiring diagram, the wires are indexed in the ordeytlre introduced into the
diagram but their geometric ordering on the right-hand $aethe left-hand side) of the
diagram as viewed on the page, might be different from thexraidering. Moreover, by
our algorithmuw, will always be at the top on the right-hand side of the diagram

Lemma 13. If W is an unbraided wiring diagram consisting of wirg¢s;, ws, ..., w,},
which is obtained by the blowup algorithm with respect to sdmowup sequence starting
from the initial blowup(0) — (1,1), then any set of wires including;, which is con-
secutive with respect to the geometric ordering on the fltgntd side of the diagram, is
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also geometrically consecutive (perhaps with a differeedrgetric ordering) on the left-
hand side of the diagram. Moreover, if any wire other thancarries an even (resp. odd)
number of marked points, then on the left-hand side it is alfasp. below) all the wires
which appear before it in the geometric ordering of the wimeshe right-hand side of the
diagram.

Proof. We prove the lemma by induction on the number of wires. Theviwimg diagrams
we described above corresponding to the blowup sequéfites (1,1) — (2,1,2) and
(0) — (1,1) — (1,2,1), respectively, can be taken to be the initial step of our atidn
argument. The properties stated in Lemimha 13 hold for thesaguliagrams.

Suppose that both properties stated in Lenimia 13 hold wher tre up tor > 3
wires in any unbraided wiring diagram obtained as a resuthefblowup algorithm with
respect to some blowup sequence starting from the init@avbp (0) — (1,1). We will
prove that these properties continue to hold when a new wigsierted into the diagram
corresponding to a new blowup. If the new wire inserted gpoads to an exterior blowup,
it is clear that both properties stated in Leniméa 13 contindetd in the new diagram with
r + 1 wires. This is because in this case, the new wire will be teskat the bottom of
the diagram with a single marked point on it and without artgngections with the other
wires.

Suppose that a new wire,.. is inserted inta/V with respect to an interior blowup at
theith term, for somd < i < r — 1. Let W, be the subset ofV consisting of the top
wires in thegeometric orderingf the wires on the right-hand side of the diagram. Note
thatW, ;1 = W; U {w;}, since by definitiony; € W is the(i + 1)st wire with respect to
the geometric ordering of the wires on the right-hand sidiefdiagram.

Assume thatv; has an odd number of marked points. By the induction hypethes
before we insertv, 1, the wires in the serV,; are geometrically consecutive (perhaps
with a different geometric ordering) on the left-hand siahile w; is at the bottom of these
geometrically consecutive wires. The new wirg,; will be initially right below the wire
w; on the right-hand side of the diagram amg., will go through all the marked points
onw;, and otherwise it will remain parallel to;, before the last twist in the algorithm.
But sincew; has an odd number of marked points, and, is initially right below w;,
the wirew,;; will be right abovew; on the left-hand side before the last twist. Therefore,
before the last twist, the wires in the 3&t,; U {w, 1} will be geometrically consecutive
on the left-hand side, and moreowvey, ;, w; will be the bottom two wires in that order.
Finally, when we twist once all the wires in the 3&} U {w, .1} (to create a simultaneous
intersection point of these+ 1 wires) as part of the blowup algorithm, the wires in the set
W1 U {w,+1} will remain geometrically consecutive on the left-handesidherew, ,,
will appear at the top, ana; will appear at the bottom of this consecutive set of wires.

Assume thatv; has an even number of marked points. By the induction hygethe
before we insertv,,, the wires in the setV,,, is geometrically consecutive (perhaps
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with a different geometric ordering) on the left-hand sidejle w; is at the top of these
geometrically consecutive wires. The new wirg,; will be initially right below the wire
w; on the right-hand side of the diagram and,; will go through all the marked points on
w;, and otherwise it will remain parallel to;, before the last twist in the algorithm. But
sincew; has an even number of marked points, ang; is initially right beloww;, the wire
w,+1 Will be right beloww; on the left-hand side before the last twist. Therefore, teetioe
last twist, the wires in the sé¥;,; U {w,} will be geometrically consecutive on the left-
hand side and, moreovey,, w,,; will be the top two wires in that order. Finally, when we
twist once all the wires in the s&V; U {w, .} (to create a simultaneous intersection point
of these: + 1 wires) as part of the blowup algorithm, the wires in the)dét,; U {w, 1}
will remain geometrically consecutive on the left-handesidherew; will appear at the
top, andw,,; will appear at the bottom of this consecutive set of wires.

The discussion above proves that, after we ingert, any set of wires ilV U {w,,1}
includingwy, which is consecutive with respect to the geometric ordeoimthe right-hand
side of the diagram, is also geometrically consecutiveh@es with a different geometric
ordering) on the left-hand side of the diagram.

Moreover, ifw; has an odd (resp. even) number of marked points, then will have
even (resp.odd) number of marked points by the blowup algoriand it will be above
(resp. below) all the wires iV, ., on the left-hand side of the diagram. The upshot
is that both properties stated in Lemimd 13 hold true for thieraided wiring diagram
Wwu {wr+1}- O

4.2. An example. Consider the blowup sequence
(0) = (1,1) = (1,2,1) = (2,1,3,1) = (2,1,4,1,2).
In Figure[ 13 below we depict the diagrams corresponding to
(1,2,1) = (2,1,3,1) — (2,1,4,1,2)
starting from the diagram dfi, 2, 1) already depicted in Figute12.

4.3. The twisting algorithm. Suppose thatV is an unbraided wiring diagram consisting
of wires{w;, wo, ..., ws}, which is obtained by the blowup algorithm with respect tmso
blowup sequence, starting from the initial blow({y — (1,1) and ending with somé-
tuple of positive integers. LétV, be the subset ofV consisting of the top wires in the
geometric orderingpf the wires on the right-hand side of the diagram, as in Seffi].
Based on an-tuplem = (my, ..., my), wherem; is a nonnegative integer, we describe
a procedure called thisvisting algorithmto extend the unbraided wiring diagravy to
another unbraided wiring diagrai(m) with the same number of wires but with more
marked points obtained by extra twists inserted to the left.
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(1727 1)4> (271737 1)—> (271747172)

—ee W1 w1 w1
T z3 w rs3 w
—_— Wy 2 2
X9 z1 Tl
— e W3 Wy Wy
L2
—_—— W3 w3

Z2

Ws

FIGURE 13. Wiring diagrams corresponding to the blowup sequence
(1,2,1) = (2,1,3,1) — (2,1,4,1,2).

If m; = 0, then we do not modify¥ and move onto the next step. /H; > 0, then
we simply addn; extra marked pointg;, y1, . ..,y; onw; to the left ofz,_;. If my =0,
N————

m1
then we do not modify the diagram any further and move ontathe step. Ifmy > 0,
then by Lemma 13, we know that the wires)iti, are geometrically consecutive on the
left-hand side of the diagram. We extend/V by twisting m,-times the wires in\;,
creating consecutive simultaneous intersection points, . . . , y» to the left of the last, if
~——————

ma2
any,y;. If ms = 0, then we do not modify the diagram any further and move oremext
step. Now suppose that; > 0. Since the wires inV; are geometrically consecutive on
the left-hand side of the diagraiv by Lemmd_1B these wires will remain geometrically
consecutive after the first additional twists we possibliipto the diagram corresponding
to my. We extend the diagram further by twistimgs-times the wires inVs, creating
simultaneous intersection poip, ys, . . . , y3 to the left of the last, if anyy,. By iterating
N———

m3

this procedure, we extend to YV (m) with additional marked points correspondingo

Remark 14. Here, we think ofn; as the “multiplicity” of the pointy;. If m; = 0, then
y; does not appear in the diagram, andiif, > 1, theny; is repeatedn,-times. To avoid
cumbersome notation, we do not put an extra index to disisigeetween different; type
points.

4.4. An example. Here we give an example where we extend the wiring diagréor-
responding to the blowup sequence

0)—(1,1) — (1,2,1) — (2,1,3,1) = (2,1,4,1,2)

depicted in Figure 13 tsV(m) applying the twisting algorithm based on= (0,1, 1,1, 1).
Note that inside the dotted square in Figure 14, there is g 6bpV from Figure 13.
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FIGURE 14. Extending/V to W((0,1,1,1, 1)) by applying the surgery al-
gorithm based om = (0,1,1,1,1).

In this examplen; = 0 andmy, = 1 and the wiresV, = {w;,w,} are geometrically
consecutive on the left-hand side . Now we twist them together once to obtain the
marked pointy,, which is to the left ofr,. Sincems; = 1, next we twist the wires in
Ws = {wy,wq, wy} (Which are geometrically consecutive) together once t@iabthe
marked pointys, which is to the left ofy,. Sincem, = 1, we twist the wires iV, =
{wy, we, wy, w3} (Which are geometrically consecutive) together once taiotihe marked
pointy,, which is to the left ofy;. Finally, sincem; = 1, we twist all the wires inV; = W
together once to obtain the marked poigt which is to the left ofy,, as illustrated in
Figure[14.

Remark 15. We will also speak about(y), A(ys) andV (y,) for each marked poing; in
the rest of the paper, as described in Definitibhis|6, 7,[and 8.

5. FROM VANISHING CYCLES TO UNBRAIDED WIRING DIAGRAMS

We recall the main theorem from the introduction, where weehaeplacediV with
W,.4(n) below, to be more precise.

Theorem[d. There is an algorithm to draw an explicit unbraided wiringagram whose
associated planar Lefschetz fibration obtained by the niktii®@lamenevskaya and Stark-
ston[10] is equivalent to the planar Lefschetz fibratidf), ,(n) — D? constructed by the
authors in[2].

Before we give the proof of Theordm 1 below, we illustratestatement and its proof on
an example. First we introduce some notation that will belus¢he following discussion.
The diskD,, with k& holes will be viewed in two different but equivalent ways aldws:

(i) the holes are aligned horizontally iR, and enumerated from left to right or (ii) the
holes are aligned vertically i, and enumerated from top to bottom. Here we identify
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the “horizontal” Dy, in (i) with the “vertical” D in (ii) by rotating the “horizontal’Dy,
clockwise by90°. The reason why we consider these two embeddings of a dibkheles
is that the vanishing cycles in![2] are described on a hotadah,, while the vanishing
cycles in [10] are described on a vertida}. Here we compare them on a vertidaj via
the identification given above. When we viéw, vertically, the mirror imager of a curve
a C Dy is defined to be the reflection of along they-axis, once the holes iw, are
aligned vertically along thg-axis.

5.1. An example. In Sectiori 3.8, we constructed a planar Lefchetz fibration
Ween((2,1,4,1,2)) — D?
whose fiber is the disk5; with 5 holes and whose vanishing cycles are the curves

Qy, Og, O3, 04, Y2, Y3, Y4, V5

in D5, which are depicted in Figurés$ 9 dnd 10. We claim that thegslaafschetz fibration
obtained by using the method of Plamenevskaya and Star&stmtiated to the unbraided
wiring diagramW/((0, 1,1, 1, 1)) in Figure[14 has exactly the same set of vanishing cycles
(viewed in a verticalD5), except that we have to take “mirror images” of all the csraad
reverse the ordeof the vanishing cycles in the total monodromy. In other vgofdst we
rotate the disks in Figurés 9 aind 10 clockwiseéd)byand then take the mirror images of the
curves. This modification of the vanishing cycles is not auésby Lemma 11. Note that
the mirror image of a-curve is equal to itself, and hence we only need to take timeomi
images of thex-curves. As a matter of fact, we claim thety,) = ~,, for2 < j <5
andV(x;) = @, for 1 < i < 4 (see Remark15 for notation). To verify our claim, we
apply the method of Plamenevskaya and Starkston (see B8&tido describe a set of
ordered vanishing cycles associated to the marked poifiigure 14, where we depicted
the convex curves assigned to the marked points in Figure 15.

Note that

V(ys) = A(z1) o -+ 0 A(za) 0 Aya) 0 A(ys) 0 A(ya)(6(ys)) = d(ys) = s,
V(ya) = A(z1) 0+ 0 A(ms) 0 Aya) o A(ys)(6(ya)) = 74, as illustrated in Figure 16
V(ys) = A(zq) o0 Axy) o Ay2)(d(ys)) = 73, as illustrated in Figure17, and
V(ys) = A(z1) 0+ 0 A(xy)(d(y2)) = 72, as illustrated in Figure 18

Remark 16. In Figure[16, we have not includetiy,) and é(y3) as dotted curves since
A(y2) o A(ys) would not have any effect arjy,). Similarly, we have not included(y,)
as a dotted curve in Figurie 17 sina®(y,) would not have any effect arfys). We will
generalize this observation as Lemma 19 in Se¢tion5.2.1.
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V4

o(o o o o

FIGURE 16. Starting fromi(y4), we apply a counterclockwise half-twist
on the subdisk enclosed by the dotted curve, at each stedéfoto right.

FIGURE 17. Starting fromi(y3), we apply a counterclockwise half-twist
on the subdisk enclosed by the dotted curve, at each stegéfoto right.

Moreover,V (z4) = @, by comparing Figurgl9 and Figure W(z3) = @; by comparing
Figure[9 and Figurgl5, and finally (z2) = 6(x2) = @y = ax andV(zy) = (1) =
@, = aq, by comparing Figurel9 and Figure 3. Note that the total momog of the planar
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FIGURE 18. Starting fromi(ys), we apply a counterclockwise half-twist
on the subdisk enclosed by the dotted curve, at each stedéfoto right.

Lefschetz fibration is
D(7v5)D(v4) D(7y3) D(7v2) D(@s) D(@i3) D () D(ov1),
which coincides with the monodromy in Remark 12.
Now we are ready to give a proof of Theorém 1.

5.2. Proof of the main result. Suppose that > ¢ > 1 are coprime integers and let
B by by, b
p—q
be the Hirzebruch-Jung continued fraction, whigre 2 for 1 < ¢ < k. We set
b == (bl,bg, .. ,bk)
Definition 17. (The wiring diagramsV,,, andW,(m)) For any
n= (’fll, na,... ,’flk) S Zk(ﬁ)

let (0) — (1,1) — --- — n be a blowup sequence, and let = b — n. We denote
by W,, the unbraided wiring diagram witk wires {wy, ws, ..., w;} andk — 1 marked
pointszy_1,xx_o, ...,z (reading from left to right) constructed by applying the lg
algorithm in Sectiof 4]1 to the given blowup sequence. Wetddry)V,(m) the extension
of W, to the left obtained by applying the twisting algorithm ircen[4.3 based on the
k-tuplem. Note thatV,(m) is obtained fromWW, by inserting additional marked points

Yks o s Yk Yk—1y -+ - Yk—15 - - -5 Y1, -+ -, Y1,
A > J/ N >

Vv Vv
mg mg—1 mi

reading from left to right.

Vanishing cycles associated tdV,(m): Now we can apply the method of Plamenevskaya
and Starkston (see Sectidn 2) to the wiring diagtah{m), to obtain the associated planar
Lefschetz fibration by describing a set of ordered vaniskiyaes on the diskD, with &
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holes. According to their algorithm, there is a vanishingleyassociated to each marked
point in W,(m). So, for eachl < ¢t < k — 1, there is a vanishing cycl€(x;) associated
to the marked point; in W,(m), and for eachi < s < k, there is a vanishing cyclé(y;)
associated to the marked pointin W,(m). Note that there aré — 1 vanishing cycles
associated to type marked points, and since eaghis repeatedn; = b; — n; times, there
are

m1+m2++mk:(b1—n1)+(b2—n2)++(bk—nk)
vanishing cycles in total associated to typmarked points.

Planar Lefschetz fibration W, ,(n) — D?*: Let W, ,(n) be the minimal symplectic fill-
ing of (L(p, q), {can) @s in Sectiom 3]1. As we described in Secfiod 3.2, there isuaapl
Lefschetz fibratiori?, ,(n) — D? with fiber Dy, which is obtained by applying the sta-
bilization algorithm and the surgery algorithm. Note tHare arek — 1 vanishing cycles
a1, o, ..., ah_1 coming from the stabilization algorithm and

(b1 — 1) + (ba — n2) + - + (b, — n)
vanishing cycles

{717"'7717727'--7727---77/67---7/6}
—_——— —— ——
bi—n1 ba—no bp—ng

coming from the surgery algorithm.
Theorent 1 is in fact equivalent to Proposition 18 coupledhwigmme11.

Proposition 18. Let W, (m) be an unbraided wiring diagram with wires as described in
Definition[17. Then

(@) forany1l < s < k, the vanishing cyclé’ (y,) associated to the marked point €
Wh(m) is isotopic toy, in Dy, and

(b) forany1 < t < k — 1, the vanishing cyclé/(z;) associated to the marked point
x; € Wh(m) is isotopic toa; (the mirror image oty,) in Dy,.

In the rest of the article we will provide a proof of Propasitil8. In Section 5.211, we
will first formulate Proposition 24 (a necessarily very teidal result) and Lemma 25 will
show that it implies Propositidn 118(a). Then we will turn attention to Propositidn 18(b)
in Sectiori5.2.2, where we will formulate the result as Psipan[26.

5.2.1. The case ofj-curves: To prove our claim in Propositidn 118, we will verify that for
1 < s < k, the vanishing cyclé’(y,) is isotopic to the curve, in D,. We begin with a
simple but crucial observation.

Lemma 19. For any wiring diagramW,(m) with k£ wires as in Definitio 17, and for any
1 < s <k, we have

Vi(ys) = Alzr) 0 -+ 0 Alzg-1)(5(ys)).
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Proof. By Definition[8 we have
V(ys) = A(z1) o= 0 Alap1) o (A1) ™ o0 (Ays—1))" 7™ (3(ys))-

But

(A(yn) ™ o0 (AYs—1))"* "1 (6(ys)) = 6(ys),
since the convex curves associated to the typearked points are nested, due to the con-
struction and the order of the typemarked points in the wiring diagram. U

Therefore, to prove our claim in Propositibn] 18 (a), for eack s < k, we need to
verify that
A1) o0 Alxy—1)(0(ys)) = s
by Definition[8 and Lemmia_19. Equivalently, we need to vefifgttfor eachl < s < k,

(Awr-1)) " o0 (Az1)) 7 (7:) = 0(ys).

For technical reasons, we will prove a more refined statemdropositiori 24 from which
our claim will follow by Lemmd_2b. Before giving the statenteve make the following
definition.

Definition 20. (Right/Left-convexity)A curve in a disk with holes enclosing two distinct
sets of adjacent holes as illustrated in Figlre 19 is calleght-convex, and the mirror im-
age of a right-convex curve is called left-convex. By dédiniany convex curve enclosing
a set of adjacent holes is both right-convex and left-convex

FIGURE 19. A right-convex curve in a disk with holes.

Notation for the rest of the paper: During the proof, it will be convenient to keep track
of the number of wires in our wiring diagrams when talking abmarked points. Thus
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we will write z¥ (resp.yf) when talking about the marked point (resp. y,) in a wiring
diagram withk wires. Although this decoration will make the notation cuerdome, it is
necessary for the accuracy of the arguments, but the readsadely ignore this superscript
for the most part in the text below. Similarly, when talkirgpat curves and half-twists in
a disk with holes, it will be convenient to keep track of thenher of holes. For example,
we will write 4% when talking about the convex curve in the disk D, with & holes.
Moreover, the counterclockwise half-twidt(xz;) in D, will be abbreviated by\* and its
inverse, the clockwise half-twist, byA¥)~1. (Fortunately, we will not need to us®(y;)

in our discussion below by Lemnia]19, and hence the notakipwill not lead to any
confusion.) Furthermore, we will denote tité hole (with respect to the geometric order
from top to bottom) inD,, by H¥. We will also need the following definitions.

Definition 21. For 2 < s < k, we denote by* the collection of red arcs i, shown in
Figure[20, where we sét? := ().

FIGURE 20. TI'*is the collection of red arcs.
Fix any wiring diagramV, with k wires andk — 1 marked points¥ ... 2} (reading
from left to right), as in Definition 17.

Definition 22. For 2 < s < k, let p* be the smallest € {1,...,k — 1} such that the
convex curve (zF) C Dy, assigned tarf containsH*. For1 < s < kandl <r <k -1,
we define

P, = (A7 o (AK) oo (AF) (),
Fk N (Aff)_l © (Avlf—l)_l ©---0 (A];/;)_l(rf) if s > 2 and r > p];
I otherwise,

and setyf, := 7 andI'%; :=I'%.
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Note thatl’; . = () for any0 < r < k — 1, by Definition[22.
Definition 23. We abbreviate
WP = (A7) o (AfL) oo (AT
for r > 1 and set} = id.

Proposition 24. Fix any wiring diagramW, with k wires andk — 1 marked points:t_,,

., z¥ (reading from left to right), as in Definitidn 17. Then theléoling three statements

holdforanyl < s < k,andl <r <k —1:

(L1) The curveyjr is left or right-convex.

(L2) The sidedness of the convexity,¢f. is opposite to that of% ., if and only if the
convex curve assigned i¢ contains¥® | (H¥).

(L3) If s > 2 andr > pf, thenT':  has one of the two forms shown in Figlré 21. In
particular, the holes enclosed w;r can be split into two collections of adjacent
holes, which we will call “lobes” with the lobe containing®(H*) being called the
“primary lobe” and the other lobe the “secondary lobe”. Weqeire Uk (HEF) to
be the innermost hole of the primary lobe and the intersactibl™* = with a half-
plane containing the primary lobe to have precisely one efttho forms illustrated
in Figure[21. Whers = 1, we havd™} . = 0, forany0 < r < k — 1.

Lemma 25. Propositior 24 implies Propositidn 1(&).

Proof. Lemmal18 implies that, for each < s < k, the tops wires according to their
geometric order on the right-hand side of a wiring diagrandescribed in Definition 17
will be consecutivéperhaps with a different geometric order) on the left-hsidé as well.
Therefore, by definition, the convex curdéy*) encloses the set of adjacent holesip
each of whose order is the same as the local geometric oraerecdf these wires on the
left-hand side of the diagram.

On the other hand, by definition, the convex curfeencloses the top holes inD,, and
the set of images of these holes undar )~ o --- o (A¥)~! will be the same as the
set of adjacent holes enclosed &y/*). To see this, imagine that each wire has a colour
and that each hole in the initial copy éf, has a colour so that thih hole from the top
has the same colour as thh wire from the top on the right hand side. As the wires
move from right to left, they will be locally reordered eadmé a marked points appears
in the diagram. Similarly, the clockwise half-twist copesding to that marked point will
reorder the holes on the digk,. We set up our algorithm so that at each step the colour of
each wire remains the same as the colour of the correspohdiag

Moreover, for each < s < k, we know by Proposition 24 that the curve

Vf,k—l = (A ) oo (AT



28 MOHAN BHUPAL AND BURAK OZBAGCI

FIGURE 21. I} is the collection of red arcs in both forms in (L3).

is right or left-convex, but since it encloses a setadfacentholes, it must beconvex
Therefore we conclude that for eath< s < k, the convex curve?, _, is isotopic to the

convex curvey(y~). O

Proof of Propositio 24 We will prove Propositioh 24 by induction on the number ofesgir
in the wiring diagram. These three statements are vacutugyor a wiring diagram with
one wire and no marked points. Now suppose that2 and these statements hold for any
wiring diagram constructed using the blowup algorithm abaith & — 1 wires andk — 2
marked points. We will prove that they hold for any wiring giiam withk wires andk — 1
marked pointse¥ |, ..., 2z} (reading from left to right), constructed as in Definition. 17
Our induction argument naturally splits into several cases

Case | (Exterior blowup): This is the easiest case. Suppose that the last myires
inserted into the diagram as a consequence of an exteruplso thatu,, lies belowall
the wires and has no “interaction” with the other wires. Rlébat w,, carries a free marked
pointz¥ | which is placed geometrically to the left of all the previsnarked points in the
diagram.

Consider a fixed embedding &f,_; C Dy, whereD,._; includes the tof — 1 holes in
Dy In other wordsD,, is obtained fromD;,_; by inserting an extra hole, namétf by our
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conventions, at the bottom. Under this embedding, forlagyt < k — 2, the convex curve
§(zF~1) in Dy_, can be identified with the convex curdér¥) in Dy, sincez® = 2~ in
the new diagram. SimilarlyAF = AF~! for any1 < ¢ < k — 2, under this embedding
and hence it follows that for < s < k —1andl < r < k — 2 we havey!, = 74" and
I'% . = I'%;', which proves by induction, that statements (L1), (L2) ai8) (hold for the
new wiring diagram with: wires, for these cases.

Note that the convex cunvEzf_,) is the curve that encloses the last halg c Dy, by
definition. Therefore, fot < s < k — 1, the clockwise half-twistAf_,)~! has no effect
on theconvemurve% .o Nor on the collection of arcs” x—2- Hence statements (L1), (L2)
and (L3) hold forl < s < k — 1 andr = k£ — 1 as well in the new wiring diagram with
wires.

Finally, we observe that,ﬁr = ~¢ is convex for eachr, hence (L1) and (L2) automati-
cally hold fors = k. Also, pj = k — 1 andl'},_, = (A;_;)~'(I'}) has the form shown in
Figure[22, thus (L3) also holds fer= k

Dy,

k
Vi, k—1

FIGURE 22. I} ,_, is the collection of red arcs.

Case Il (Interior blowup) : Suppose that the last wite, is introduced into the diagram
as a consequence of an interior blowup at determ so thatvy, is initially right below
the (¢ + 1)st wire with respect to thgeometric orderingof the wires on the right-hand
side of the diagram. Suppose that this+ 1)st wire isw;. Now imagine that we take a
step back in our blowup algorithm. In other words, we delbeelast wirew,, (and the last
marked point¥ _, and the associated last twisting) from the diagram. At thesséime we
remove thecorresponding holédrom D, as follows. First we remove thg + 2)nd hole
from D, to obtain the rightmost copy db,_;. As we move from right to left in the wiring
diagram, every time we pass through a marked point, we hase/@opy ofD,._, obtained
by removing fromD,. the hole whose order is the same as the local geometric oftlee o
wire w;. All these copies ofD,_; can of course be identified with the rightmost copy
of D,_; and we use this observation in our induction argument beldwere we proceed
according to three possible cases.
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Case II.A (Interior blowup, 1 < s <1i): Suppose that < s < i. By hypothesiswﬁ;1
andF’f‘1 satisfy statements (L1), (L2) and (L3) @,_; for 1 < r < k—2. Now sincey*~
does not contain the holé!; !, by the assumption that< s < i, the image¥*_, (H ")
is not contained |ny’f Lfor1 < r < k — 2. Therefore, we can insert back the hole we
deleted by splitting the |mag@’“ 1(Hf+11) into two adjacent holes. The new hole will be
inserted right below{ +1 in the rightmost copy ob,._; and it will be inserted right below
or aboveW!—!(H! ') in an alternating fashion every time we pass a marked poatt th
belongs to the intersectian; N wy. As a result, the superscript— 1 can be promoted to
k, meaning that the curve?! can be viewed as¥, andI'" ' can be viewed aB! , since

s,r!?

we have not modified them by the insertion of the new hole. deficandl’? . satisfy the
statements (L1), (L2) and (L3) aby, for 1 < r < k — 2, as well.

To finish the proof of this case, we only need to argue tffat , andT'%, , satisfy
the statements (L1), (L2) and (L3). But by the discussion\/abﬁik_2 is right or left-
convex and belongs to the subdiskiin, along which we apply\,', corresponding to
the new marked point,_,, by our algorithm. Therefore, it is easy to see th@_l =
(Af-1) " (Vo) @ndT ) = (Af_y) 1 (I% o) satisfy (L1), (L2) and (L3) as well.

Case I1.B (Interior blowup, i + 2 < s < k): Suppose that+ 2 < s < k. We check
thaty* andI’% satisfy statements (L1), (L2) and (L3) far < r < k — 1. We will
proceed by induction on. In the case: < pf, the statements are trivial singé, = ~*
andI’* = I'* in this case. Ifr = p¥, then, after applying the clockwise half-twigh}) "

tonf,_, =+Fandl’,_, =TI'}, we see tha4!, andT'? . have the form given in Figuie 23.
Thus statements (Ll) (L2) and (L3) hold in this case also.

FIGURE 23. T , is the collection of red arcs.
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Now suppose that statements (L1), (L2) and (L3) holdifer 3 > r = p > p*. We
check that the statements continue to holdfer p + 1. For this first note that the convex
curved(xz}, ) encloses the hol@”(H¥) if and only if the convex curvé(x erl) encloses
the holel~ L(H*1). Indeed, ifs > i+2, then the wire in geometric positieron the right
hand side of the wiring diagram is wire, for somel < k, since wirewy, is in geometric
position: + 2 on the right hand side. If we take a step back in our blowuprélya, then
wire w; will have geometric positios — 1 on the right hand side of the wiring diagram,
now with £ — 1 wires. Fors > i + 2, the result claimed now follows from the fact that
6(z;,) encloses the hol&'(H;") if and only if the wire in geometric positiohon the
right hand side of the diagram passes through the marked pgip. If s = i + 2, then
the wire in geometric position on the right hand side of the wiring diagram will be wire
wg. Since wirew;, passes through each marked pai@tthat wirew,; passes through for
1 < ¢ < k — 2, otherwise remaining parallel to,;, arguing as above, we obtain the same
result fors =7 4 2.

By hypothesis of the induction on, it now follows that the curveyfvp will be right
or left-convex according to Wheth@f__ll’p is right or left-convex. Furthermore, the holes
thawsp encloses can be obtained from the holes ﬂjaf,p encloses by splitting the hole
k=1(HES) into two adjacent holes.

In a similar way, the holes thal{z], ) encloses can be obtained from the holes that
§(x1) encloses by splitting the hole:~!(H} ") into two adjacent holes. As a con-
sequence the curvgf ., = (AkF,)” (ys’p) satisfies (L1) and (L2) and the holes that
vk ,+1 encloses can be obtained from the holes 'djaf,pﬂ encloses by splitting the hole
Uk H(HES into two adjacent holes.

We now show thaf’f][,Jrl satisfies (L3) by considering the cases t:ﬂ\(ai’;H ) encloses
and does not enclose the hole(H}) separately. First suppose th%(tva) does not
enclose the hol&@(H¥). Thend(z} }) does not enclose the hole:~* (H:~}). Assume
that %~} 1p IS right-convex; the case thaf_ is left-convex is similar. Then*~! Lpi1 1S
also right-convex and we have the foIIowmg possibilitiesd(x p+1)

() 6(z erl) is disjoint from% i+ Inthis casej(x erl) cannot enclose a subset of holes
from the primary lobe ofy;~ 1p, since otherwisd™~ 11p+1 would fail to satisfy (L3).
follows thatd(z,,) is disjoint from~* and that it does not enclose any subset of holes
from the primary lobe ofy . ThusT* s p1 Satisfies (L3).

(||) o(z erl) mtersectSyS 1, and encloses at least one hole below the primary lobe of
Sy - Inthis casey* "] »+1 would fail to be right-convex, which contradicts our indoct
hypothesis. Hence this case cannot occur.
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(i) ¢ ( 1) intersectsy~} Lo and encloses at least one hole above the secondary lobe of

vE- i, In thls case alsg*~} 1.p+1 Would fail to be right-convex, and hence this case also

cannot occur.

(|v) o(x erl) intersectsy”~} 1, and encloses at least one hole below the secondary lobe of
yE- o fo(x p+1) does not enclose all the holes contained in the secondagyaolf ~| L
then eithery~} ., would have more than two “lobes” a¥*~*(H*~}") would not be the
innermost hole of the primary lobe. Both of these cases adidtthe induction hypothesis
hence they cannot occur. Thus the only possibility in thisecs thatd(x p+1) encloses
all the holes contained in the secondary lobe and at leasholeebelow it. This case is
illustrated in Figuré 24(a). In this cadér’ ) will enclose all holes in the secondary lobe

of Vs,p and enclose at least one hole below it. Heﬁ@;;;1 will satisfy (L3) in this case
also. This concludes the analysis for the c&a¢ , , ) not enclosing the hol&” (H}).

Now suppose thaf(z*, |) encloses the hol&*(H*). Thend(z}7]) encloses the hole
\If’f—l(Hf‘ll) Suppose that is right-convex; again the left-convex case is similar. The
yE- lp is also right-convex. By the induction hypothesis, the imag-*~} 1, under the
clockwise half-twist aboud(z p+1) must be left-convex and the |mage[oj‘ must con-

tinue to satisfy (L3). In this case it can be checked thatif ;) does not enclosaf_‘ip,
then it must enclose all the holes of the secondary lobe (anklotes above it) and any
number of holes below*~!(H¥~}"); this situation is illustrated in Figufe R4(b). Since, by

splitting vertically the holelfk—l(Hle) into two adjacent holes, we obtaijti, andd(z}, ;)
from v¥~ lp anch( erl) respectively, it follows that*  andé(2% ) will have the same
form asy}~]  andd (2} 1), thatis,é(zk, ;) will enclose%p or it will enclose all the holes
of the secondary lobe (and no holes above it) and any numiteries beIOV\LIf’f(H’f) Itis
now clear that, after applying applying a clockwise halfstvabouti(z%, ;) to F’;p, I
will continue to satisfy (L3).

We have thus checked tha@ andl* satisfy (L1), (L2) and (L3) for < k — 2. We
now check that they satisfy (Ll) (L2) and (L3) for= k£ — 1 also.

As % ! o Will be in the left-most copy o)., by Lemmé 1B, all the holes enclosed
by v+~ o Will be adjacent and the hole} ~1( HF ) will be either at the top or the bottom
of these holes. Being one-sided convex (by the inductiorothgsis), the curve®~ 1/<; 9
must be convex and hence the paif~/,_,,I'*”},_,) must be as in Figufe 25. Thus the
curver¥,_, must also be convex as the holes it encloses are obtainedffi®ioles that
Wf__ik , encloses by splitting’}—,(H[;") into two adjacent holes. As the holes enclosed
by v¥,_, must be adjacent with the hole}_, (H?) at one end (again by Lemrhal13), it
follows thatd(zj_,) must be disjoint fromy!, _,. Hence the curve?,_, will be convex
and statements (L1) and (L2) will hold for= k — 1 also.
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FIGURE 24. Some possibilities faf(z} 7).

To see that (L3) also holds fer= k — 1, first suppose that > i + 2. Then¥¥_,(HF)
will already be at the top or bottom of the holes enclosedmz. As the last marked point
x¥_, only involves the wires having the geometric positiqml <t<i+2,t#i+1}
on the right hand side, the last clockwise half-twist’ ,)~! will be about a subdisk that
does not enclos&;_,(H!). It easily follows thaf™?, _, WI|| satisfy (L3).

Now suppose that = i + 2. Then the holel} (Hf) will be either one below the top
hole or one above the bottom hole df, . The last clockwise half-twist will be about
a subdisk that encloses all the holes)¢f,_, except the holel;_,(HY, ), which will be
at the top or the bottom. Again it follow thﬁ’fj,k_1 will satisfy (L3). This completes the
proof of Case II.B.

Case II.C (Interior blowup, s =i+ 1): Suppose that = i + 1. By the proof of
Case II.B, we know tha’mzr andeHm satisfy (L1), (L2) and (L3) forl < r < k — 1.
Note that forl < r < k — 2, the holesUF(H}, ) and ¥%(HF.,) will be adjacent, since
the wiresw; andwy, having geometric positions+ 1 and: + 2, respectively, on the right
hand side of the diagram, will remain consecutive up to thekewhpointr,_;. Thus hole
\If’f(Hz’irl) will be in the primary lobe ofyf,, . for 1 < r < k — 2. Itis now clear that
Y1, is given by isotopingyf, , . over the holel} (H,,) from the side dictated by}, , ,
for 1 <r<k-2;see Flgur@6 It follows that statements (L1), (L2) and)(h8Id for
Y, andlF, forl <r <k-—2.

Forr = k — 1, we argue as follows: Slncer , Will be convex with the hole
Uy—i(HES') at one end and the two holdg (H, z+1 ) and ¥ (HE,,) will be adjacent and
both in the primary lobe of/,,, ,, the curvey}’,, ,_, must have one of the two forms
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FIGURE 25. One arc of *~}, , is shown in red.

FIGURE 26. The case wheh<r < k — 2.

given in Figuré 2l7. It easily follows that" , ,_, andI'’} , , , satisfy statements (L1), (L2)
and (L3). This completes the proof of Case II.C. O

5.2.2. The case ofv-curves: We reformulate our claim in Propositidn]18 (b) abaeut
curves as Proposition 26 below, where have we replaggan) by W, since the extension
from W, to W,(m) is irrelevant. Recall that denotes the mirror image of a given curve
«. In the following, we will decorate each curve with a supgpdo indicate the number
of holes in the disk in which they are embedded. For exampéewill usea” to indicate
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FIGURE 27. The case when= Lk — 1.

that we are talking about the curug (see Section 3.2.1) ibv,.. Similarly, we will decorate
each marked point in a wiring diagram with a superscript thaate the number of wires
in the diagram.

Proposition 26. Let W, be a wiring diagram witht > 2 wires andk — 1 marked points
xk ., ..., 2% (reading from left to right) constructed as in Definitior 1&wespect to some
blowup sequence. Then, for eack< t < k — 1, the vanishing cycl& (zF) associated to
the marked point* via the method of Plamenevskaya and Starkston, is the niimage
a’ of the curven? obtained by the stabilization algorithm described in Seuf3.2.1 with
respect to the same blowup sequence.

Proof. According to Definition 8}V (z}) = d(z}) andV (zf) = Af o -- -0 AF | (5(aF)) for
2 <t < k — 1. Therefore, we need to verify thatz}) = o (both curves are convex and
af =af)yandAfo. . 0 AF (§(2F)) =af, for2 <t <k 1.

For k = 2, the wiring diagram has only two parallel wires and one mdnbeintz? at
the bottom wire, corresponding to the initial blow({y — (1, 1). The statement holds for
this case sincé(x?) = a?. Now suppose that > 3 and the statement holds for any wiring
diagram withk — 1 wires andk — 2 marked points, constructed as in Definitiod 17 with
respect to some blowup sequence. We will prove that therseateholds for any wiring
diagram withk wires andk — 1 marked points obtained by inserting one more wire and a
marked point corresponding to the new blowup.

Case | (Exterior blowup): This is the easiest case. Suppose that the new wyires
inserted to the diagram with — 1 wires as a consequence of an exterior blowup so that
wy, lies belowall the wires and has no “interaction” with the other wiresecRll thatwy,
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carries a free marked poinf , which is placed geometrically to the left of all the previous
marked points in the diagram.

Consider a fixed embedding &f,_; C D,, whereD,_, includes the togk — 1 holes
in Dy. In other wordsD, is obtained fromD,,_; by inserting an extra hole, naméd’
by our conventions, at the bottom. It is clear that for dny ¢ < k — 2, the convex
curve §(z¥~') c Dy_, can be identified with the convex curv¢z¥) c D; and hence
AF = AF~'foranyl < t < k—2, under this embedding. Similarly, for any< ¢t < k-2,
oF can be identified witlv}~!, by our stabilization algorithm in Section 3.2.1.

By induction, the property we want to verify holds for the wg diagram withi. —1 wires
before we insertuy, i.e., we haveé (24~1) = o' andAf o ..o AF N (5(2F 1)) =aF !,
for 2 <t < k — 2. Under the embedding above, these can be upgrad&d’p = o} and
AFo...oAF (6(zF)) =aF, for2 <t <k — 2, by simply replacing the superscript- 1
with k. The key point here is that the compositidfi o - - - o A¥ | takes place in the fixed
embedded disO,,_, C D;.

To finish the proof of this case, we only have to verify theestant fort = £ — 1. Note
that§(z¥_,) = of_,, which by definition, is the convex curve that encloses tis¢ liale
HF c D,. We observe that

Alf ©---0 A£_2(5(x£_1)) = O/;i_l

so that the “last” vanishing cycle ig_, = @}_,, which is consistent with our stabilization
algorithm in Sectiofi 3.2]1.

Case Il (Interior blowup) : Now, suppose that the new wite, is introduced into the
diagram withk — 1 wires as a consequence of an interior blowup attihéerm so thatv,
is initially right below the(: + 1)st wire with respect to thgeometric orderingf the wires
on the right-hand side of the diagram. Suppose (this 1)st wire isw;. Our proof below
splits into two subcases: the case where ¢t < k£ — 2, and the case=k — 1.

Case II.A (Interior blowup, 1 <t < k — 2): Now, imagine that we take a step back in
our blowup algorithm. In other words, we delete the last wirgand the last marked point
z¥_, and the associated last twisting) from the diagram. At timeesame we remove the
corresponding holédrom D, as follows. First we remove thg + 2)nd hole fromD,, to
obtain the rightmost copy ab,_;. As we move from right to left in the wiring diagram,
every time we pass through a marked point, we have a new copy, of obtained by
removing fromD, the hole whose order is the same as the local geometric ofdbe o
wire wy. All these copies of),_; can of course be identified with the rightmost copy of

Dy,_1, in which by induction, we have
Vi(ef™) = Al o0 AIT (6(af ) = !

for2 <t < k—2andé(zt) = o', We claim that we can upgrade the superscript
k — 1 to k in the previous sentence by splitting thie+ 1)st hole in (the rightmost copy
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of) Dy_4, to create a new hole right below it, and hence identifyiregrtaw disk ad), and
promoting the all the relevant curves fral),_; to D;. Note that this is precisely how/
is obtained fromyf~! by the stabilization algorithm in Sectibn 3.2.1. We justaheshow
thatV (zf~') can be promoted t& (z) in the same manner, for eath< ¢ < k — 2. This
is easy to see far= 1 since the convex curviz*~') can be promoted to the convex curve
§(2%) by inserting a hole irD,,_; either enclosed by(z%) or not depending on whethef
(which is in fact the same marked poirft ") belongs taw; or not.

For2 <t < k — 2, we argue as follows. In the aforementioned copie®pf,, there
is a hole whose order is the same as the local geometric ofdee avire w;. Since, by
the blowup algorithm, the wires; andw, are geometrically consecutive throughout the
diagram (except when they intersect) the correspondinghvies will be adjacent iy,
interchanging their relative order at each intersectiointpaf w; andw;, (which is indeed
a marked point in the diagram). Moreover, for eacti ¢ < k — 2, the convex curvé(z})
assigned ta:* will either enclose both or neither of these holes, dependimwhether:?
belongs taw; or not. Therefore, for each< ¢ < k£ — 2, any one of the curves

o(at), A (0(ar)), ..., Af o0 AL, (8(ar))

obtained iteratively by applying counterclockwise halidts starting from the convex curve
§(xF), will either enclose both or neither of these two holes. Timiglies that we could just
upgrade the curves

S(xt ™), AL (0(zy), o AT o0 AFT(8(2y )

from D,_, to D, by inserting a new hole (corresponding to the local geomisition

of the new wirewy) in each copy ofD;_;. Note that the new hole corresponding to the
new wirewy, can be viewed as being obtained by splitting the hole coordipg tow; at
each step. We observe that this new hole will appear rigltvbéhe (i + 1)st hole in the
rightmost copy ofD,._; giving D, and these two holes in question are enumeratédas
and HF_, in the rightmost copy oD,.. This “splitting” of the (i + 1)st hole is the crux of
the matter in our stabilization algorithm in Sectfon 3.2.1.

The upshot of this discussion is that for< ¢+ < k — 2, the vanishing cyclé/ (z¥) is
the curveaf, which is in fact nothing buﬁf‘l upgraded taD,, from D,_,, in a manner
consistent with our stabilization algorithm in Section.3.Finally, the case= k£ — 1 will
be treated separately below.

Case II.B (Interior blowup, ¢ = k£ — 1): To finish the proof of Propositidn 26, we just
have to verify that the “last” vanishing cyclé(z%_,) is the curvea? ,. Equivalently,
we need to verify thab? ,(@f ) = d(a%_,), where¥§ , = (AF )"t o---0 (A})7!, by
Definition[23. Hereinstead of inductiopwe will rather use the statement in Proposifioh 18
(a) for~;,1, which we already proved.
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The standing assumption in Case Il is that the new wijrés introduced into the diagram
with k£ — 1 wires as a consequence of an interior blowup attinéerm so thatu, is initially
right below the(: + 1)st wire with respect to thgeometric orderingf the wires on the
right-hand side of the diagram. Suppose that this 1)st wire, labelledw;, has an odd
number of marked points. The case with an even number of pa@ntery similar and is

left to the interested reader.
On the left in Figuré 28, we depict the convex curéég’’.,) andd(zf_,). This con-
figuration can be deduced from the proof of Lenima 13 for the e@senw; has an odd

number of marked points. Fer= i + 1, Propositio 1B (a) implies that
5(yf+1) = ‘11112—1(%{11) = (A£—1)_1‘D£—2(Vf+1)

and we set(yF ;) = Af_(6(yF,)) = P§_,(7F.,), which is depicted on the right in
Figure[28.

O

O1Qsee

@
o)
o
o
Q
o)

FIGURE 28. The curve~t ;)" = AF_ (5(yk.,)).

Let 3%, be the convex curve in Figufe129 enclosing the hdlés, and H!,, and let
A’gm denote the counterclockwise half-twist in the subdisk lamehby3, ;. Note that in
Dy, we haveyy_, = Aj (/) as one can see from Figurel 29.

Hence we have

1) \11112—2(@]12—1) = \Iji—2 o A} (7f+1) = A’Ewm) o \112—2(%{11) = Agw<i+2)((7§+1),)>

Bi+1

wheres;, . is defined as follows: The image of the curgg , under¥}_, is the con-
vex curveﬁfz(m) (depicted on the right in Figufe 28) enclosing two adjacei¢f whose
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FIGURE 29. The curvest, |, 8F.,, anda}_, in Dj.

geometric orders are given & (i + 2), (i +2) + 1}. HereA’gw(M) denotes the counter-

clockwise half-twist in the subdisk bounded /BS((M).

Note that the order of the purple coloured hole depicted enabpy of D, carrying
(vF.) in Figure[28 isy (i + 2), and the blue hole right below it has ordefi + 2) + 1.
In fact, (i 4 2) is the local geometric order of the wite,, andy)(i + 2) + 1 is the local
geometric order of the wire;, before the last twisting. Recall that these two wires are
always geometrically consecutive and they swap their agdeh time they intersect.

In the second equality ih]1) above, we used the fact that

\IIQ—Z © AkiJrl © <\Il£—2)_1 = Agw(iu)

which can be easily verified.

Finally, applyingA%  (on the subdisk bounded by, ... enclosing only the blue
By (i+2) p(i+2)

and the purple holes) toy", ;)" in Figure[28 we get the dashed cuide}_,). Therefore,
coupled with[(1), we conclude that! , (@t ) = d(a%_,). O

5.3. Proofs of the corollaries and some examples.

Proof of Corollary(2. According to Theorernl1, for each Stein fillimg, ,(n) of the contact
3-manifold (L(p, q), £.an), there is an (unbraided) wiring diagrai,(m), constructed as
in Definition[17, based on the blowup sequefée— (1,1) — --- — nandm = b — n,
whose associated planar Lefschetz fibratjon’V — D? obtained by the method of
Plamenevskaya and Starkston|[10, Section 5.2] is equivébethe one constructed by
the authors [2]. Moreover, using [10, Proposition 5.5],wheng diagramV,(m), viewed
as a collection of intersecting curveslinx C, can be extended to an explicit collection of



40 MOHAN BHUPAL AND BURAK OZBAGCI

symplectic graphical disks,...,I', in C x C, with marked point®;,...,p, € ;I
including all the intersection points of these disks. Ndi&t tve can assume that each in-
tersection of these disks is positive and transverse, andrersection points are allowed
as free marked points. Furthermore, by|[10, Propositioh ¥ Stein filling\v, ,(n) is
supported by the restriction of the Lefchetz fibration

7y oll: C?#mCP?\ (I U---Ul,) » C

to a Milnor ball (to get compact fibers), where: C? — C denotes the projection onto the
first coordinate]';, ..., I, are the proper transforms of,...,I",, andIl is the blowup
map. Finally, the Lefschetz fibratiorfsandr, o II are equivalent by the discussionlin [10,
Section 5.4]. Note that the last statement in Corolldry Bofes immediately from[[10,
Proposition 5.8]. O

Proof of Corollary(3.Let W, ,(n) be the Stein filling of L(p, ), {can), @nd letWW,(m) be
the (unbraided) wiring diagram constructed as in Definifldhbased on the blowup se-
quenceg0) — (1,1) - --- - nandm=b —n. LetI' =T, U--- U T, be the collection
of symplectic graphical disks, with marked poipts. .., p,, € I" as in Corollary 2. Note
that the incidence matri€,(m) := Z(I', {p;}) can be read off from the wiring diagram
Wh(m), where each wirey; is identified with the disk’; and thez- andy-type marked
points are identified with, . . ., p,,.

To compute the incidence matri,(m), we enumerate the wires from top to bottom
with respect to theigeometricorder on the right-hand side of the diagraf,(m), and
we enumerate the- andy-type marked points using their natural geometric ordemfro
right to left. The matrixZ,(m) can be viewed as an extension of the incidence mdtyix
corresponding to the wiring diagranv,, which carries only the-type marked points. In
the following, first we inductively construd, depending on the blowup sequer(é¢ —
(1,1) — --- — n, starting from the matrix

T
w1 0
Wao 1

corresponding to the wiring diagram with two wires, w, and one marked point;, ob-
tained by the initial blowug0) — (1,1). Suppose that we have constructedithe(r — 1)
incidence matrix for a wiring diagram withwires andr — 1 marked points, ..., z, 1.
Assume that we insert the next wike , ; into the diagram according to an exterior blowup.
Then we “blowup the incidence matrix” at hand by adding a tast and a last column
which consist of all zeros exceptlaat the lower right corner, to obtain the + 1) x r
incidence matrix.
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Now assume that the last wite., ; is inserted into the diagram according to an interior
blowup at theith term. Then we blowup the incidence matrix at handrsertinga new
row below the(i + 1)st row and a last column so that the new row is copied from tie ro
above and the last column is of the form

[1,...,1,0,1,0,...,0"
; >0

to obtain ther + 1) x r incidence matrix.

The matrixZ,(m) can be obtained fror, in a standard way based only on th¢uple
m. To extendZ, to Z,(m), for eachl < s < k, we just insert a column labelled with, so
that the firsts entries from the top of the column labelled withis 1, and the rest are. If
ys has multiplicitym,, then we repeat,-times the column labelled witl,. O

Here we illustrate the proof of Corollafy 3 for the wiring dram in Figurd_14. The
incidence matrixZ, can be obtained algorithmically from the blowup sequeficé) —
(1,2,1) = (2,1,3,1) — (2,1,4,1,2) = n used to construdty, as follows.

Tr1 T T3 T4
xr T s
" T Ty o, 01 02 13 w, /0 0 1 1
wy {0 exterior w1 (1) g interior Wy | 1 0O O interior w2 } 8 ? i
wy \ 1 blowup w2 blowup wy| 1 0 1 blowup Wa
w3 \0 1 w\0 1 0 w3l 0O 1 0 O
3 ws\0O 1 0 1

The first arrow above corresponds to an exterior blowup, e/ler insert the last row
and the last column which haslan the corner and everywhere else. The second arrow
corresponds to an interior blowup at the first term, and werirtbe third row and the last
column so that the first two entries in the third row are cogmth the row above and
the entries in the last column ate0, 1,0 from the top. The last arrow corresponds to an
interior blowup at the third term, and we insert the fifth rowddhe last column so that the
first two entries in the third row are copied form the row abawe the entries in the last
column arel, 1, 1,0, 1 from the top.

Letm = (0,1,1,1,1). To extend thés x 4 incidence matrixZ, for W, to the5 x 8
incidence matrixZ,(m) for W,(m), we insert the columns labelled with, v, y4, y5 Wwhere
the firsts entries from the top of the column labelled withis 1, and the rest are.
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T1 Tz T3 T4 Y2 Y3 Ys Y5
wy/0 0 1 11 1 1 1
w1 0 0 11 1 1 1
w1 0 1 110 1 1 1 [|=Zo(m)
wsl O 1 0 00 0 1 1
ws\O 1 0 1/0 0 0 1

Proof of Corollary(4. A matrix M with » > 2 rows
Vi = (%’j)? Vij - {O, 1}

is called a CQS matrix (seel[5, Definition 6.8]) (if;, v;) = (v;,v;) — 1 holds for all
1 <i < j <r,where(-,-) denotes the standard inner product, and CQS stands foccycli
quotient singularity.

Let X be a cyclic quotient singularity whose singularity link(i5(p, q), £can ). Accord-
ing to [5, Theorem 6.18], there is a bijection between theatimag components ok and
incidence matrices of the picture deformations of the dstear curve(C, ) with smooth
branches representing. Moreover, the incidence matrices are in one-to-one cpoms
dence with CQS matrices, up to permutations of the columns.

Let ZE(m) be the matrix obtained fror,(m) by reversing the order of the rows. As in
[5, Lemma 6.11], one can check tHgf(m) is a CQS matrix and that there is a bijection
between CQS matrices and the set of matrices of the #jftm). The reason that we had
to reverse the order of the rows of the matZjXm) is simply because in the present paper,
to constructZ,(m), we enumerated the wires W¥,(m) from top to bottom, as opposed to
bottom to top, with respect to their geometric order on thhtrhand side of the diagram.

Finally, we give an explicit one-to-one correspondencaben the Stein fillings of the
contact singularity linK L (p, q), £..) @nd the Milnor fibers of the associated cyclic quotient
singularity. LetiV, ,(n) be the Stein filling given by Lisca obtained by the blowup ssme
(0) — (1,1) — --- — n. Using the same blowup sequence and= b — n, we can
construct a CQS matrif*(m) as in the proof of Corollary13, which corresponds to a
picture deformation, and hence gives a Milnor fiber as in [Bje Stein fillingW, ,(n) is
diffeomorphic to the Milnor fiber, because while the wiringagramW,(m) determines
W,.4(n), the picture deformation, which is in the same combinategaivalence class as
the configuration of symplectic graphical disks arisingiind/,(m), determines the Milnor
fiber.

Conversely, for any Milnor fiber, which is obtained from atpie deformation whose
incidence matrix is a CQS matrix, one can read off the paim) as in [5, Proposition
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6.12], and therefore construct the wiring diagravh(m), so that the configuration of sym-
plectic graphical disks arising from/,(m), is in the same combinatorial equivalence class
as the picture deformation. O

Proof of Corollary[5. It is well-known that for any contact singularity linfld.(p, q), &can),
the Milnor fiber of the Artin smoothing component of the cepending cyclic quotient
singularity gives the Stein fillingV/, ,((1,2, .. .,2, 1)), which is Stein deformation equiv-
alent to the one obtained by deforming the symplectic stireobn the minimal resolution
of the singularity; see [3].

We describe a decorated gefé /) associated to the pair of coprime integers ¢ > 1
such that(C, ) determines the cyclic quotient singularity with lidkp, ¢) via the con-
struction of de Jong and van Straten [5]. We follow the desiom given in [8]. Suppose
that§ = |ay,...,an]. LetG be the decorated linear graph havimgverticesvy, ..., v,
with the vertexv; weighted by the integera,;. ThenG is the dual resolution graph of a
cyclic quotient singularity with linkL.(p, ¢). Let G’ be the simple graph obtained froth
by attaching:; — 1 new vertices ta;, anda; — 2 new vertices to each vertexfori > 1.
Assign weight-1 to each new vertex. Finally, |ét” denote the graph obtained fra&{ by
endowing an arrowhead to each new vertex. T&éns an embedded resolution graph of
a germ of a plane curve = | J, C; with smoothirreducible components corresponding to
the arrowheads i"”. The order of intersection @f; andC; corresponding to two distinct
arrows is the number of vertices on the intersection of thelgsics between the arrows
andv,,. Alsol = (I;), where the weight; is the number of vertices on the geodesic from
the arrowhead correspondingd9 to v,,,.

Now every continued fraction expansin, . . ., ¢,,|, with ¢; > 2 for all ¢, can be ob-
tained from[2] by repeated applications of the following two operations:

() [a1,...,a.] = [a1,...,a- + 1],

(i) [a1,...,ar] = [a1,...,a.,2].
Let [by,...,bs] denote the dual string a4, ..., q,|, i.e. if§ = lay,...,a] thenﬁ =
[b1, ..., bs]. Then the dual string changes for each of these two opesaitiaihe following
way:

(l) [bl,...,bs] — [bl,...,bs,Q],
(i) [bry.. by = [br,... b+ 1].

This follow immediately from a consideration of Riemenseiuer’s point diagrams. We
check that if the statement of the corollary holds for a ggiy) with £ = [as, ..., a.],
then it continues to hold if we replade, ¢) by (¢, ¢), Where{]if = la,...,a. + 1] O

f]if = [a1, ..., a,2]. As the statement holds trivially § = [2], by induction, it will follow
that the statement holds for every pair of coprime integessqg > 1.
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Suppose first thal; = [a1,...,a, + 1]. Then we have,” = [by,...,bs,2], where
b1, ..., bs] = ﬁ Notice that in the wiring diagram for the planar Lefscheltzdtion

W(p,q)((L 2,...,2, 1)) — D?

constructed according to Theorém 1, there is a final markéad pothrough which all the
wires pass. It is easy to see that that the wiring diagramhieiptanar Lefschetz fibration
Wi ((1,2,...,2,1)) — D? is given by taking the wiring diagram for the planar Lef-
schetz fibratioriV(, ,((1,2,...,2,1)) — D? and inserting a new wirey, at the bottom
of the diagram on the right hand side, which runs under thimg/iliagram up to the point
that it passes through the marked pajntturning it into ay,.-type marked point) and
then runs above the diagram. In addition, a single new mapkét is placed on the new
wire wg, 1.

Let (C, 1) denote the decorated curve associated to the pair of irsteger) constructed
as above. Thed will consist of s curvettas by the induction hypothesis. Lét, ") de-
note the decorated curve associated to the (pair/). Then it is easy to see thét can
be obtained fronT by adding an extra curveti@,,; which has intersection multiplicity
1 with each curvettal’;,i < s. In addition,l’ is given by setting, = [; for i < s and
ls+1 = 2. Since the Scott deformation ¢, /) is combinatorially equivalent to the sym-
plectic disk arrangement associated to the wiring diagraniif,, ,)((1,2,...,2,1)) (by
the induction hypothesis), it is easy to see that the Scédratation of(C’, ') is combina-
torially equivalent to the symplectic disk arrangemenbagded to the wiring diagram for
W (1,2,...,2,1)).

Now suppose thaf = [as, ..., a,,2]. Thenwe haveZ; = [by, ..., b.+1]. Inthis case,
the wiring diagram associated ¥, ,((1,2,...,2,1)) can be obtained from the wiring
diagram associated 1, ,)((1,2,...,2,1)) by adding one new simultaneous intersection
pointy, of all the wires. Also the decorated cur(&, !') associated to the pa(p’, ¢’) can
be obtained from the decorated cur¢g /) by increasing byl the order of intersection
between each pair of distinct curvett@sandC; and by increasing eachby 1. Again it
is easy to check that the Scott deformation©f (') is combinatorially equivalent to the
symplectic disk arrangement associated to the wiring diagor W, ,1((1,2,...,2,1)).

O

In the following we give an example to illustrate the proofGgrollary[5. Note that the
Stein filling W, ¢)((1,2,...,2,1)) is obtained via the sequenceefdteriorblowups

0)—(1,1) = (1,2,1) —» --- = (1,2,...,2,1),

and the corresponding unbraided wiring diagram can be deasity. The wiring diagram
corresponding tdVs6.17)((1, 2,2, 2, 1)), for instance, is depicted in Figure|30.
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FIGURE 30. Wiring diagram for the Stein fillingV 56 17)((1,2,2,2,1))—
the symplectic resolution.

Next, we show that the arrangement of symplectic disksrayisom the wiring diagram
in Figure[30 is combinatorially equivalent to the Scott defation of(C, ). First we note
that?—? = [4,2,2,4,2] and construct the curv&, [), as depicted in Figuie 81.

Note that(C, [) consists of five curvettas with indicated weights and tanggsusing the
notation in [10], where boxed numbers indicate the weigtitsled numbers indicate the
tangencies, and the other numbers are the self-intersgatimbers of the rational curves.

We also depicted the Scott deformation(6f/) at the bottom in Figure_31. It follows
that, after enumerating the smooth branches of the Scattrrdetion of (C,7) from top
to bottom as they appear on the right-hand side, the incelematrix arising from the
Scott deformation coincides with the incidence matrixiagsrom the wiring diagram in
Figure[30. Note that each branch of the Scott deformafibn) includes a free marked
point. The5 x 10 incidence matrixZ 4,4;, = Z,(m), wheren = (1,2,2,2,1) andm =
(1,0,3,0,2), is given as follows.

T1 T2 T3 T4 Y1 Y3 Ys Y3 Ys Ys
w/0 0 0 Ol1 1 1 1 1 1
wel 1 0 0 OO0 1 1 1 1 1
w3l 0O 1 0 010 1 1 1 1 1 |=Zarin
wgl O O 1 0[]0 0 O 0 1 1
ws\0 O O 1]0 0 O 0 1 1

Finally, one can easily obtain thisjoint vanishing cycles inD; of the planar Lefschetz
fibration Wise,17)((1,2,2,2,1)) — D?, which we depicted in Figuie 2. As observed in
[10], this Lefschetz fibration agrees with the Lefschetzdilom constructed by Gay and
Mark [6], using the plumbing descriptiois 17)((1,2,2,2, 1)) given by the dual resolu-
tion graph.
Note that the total monodromy of the planar Lefschetz fibraitV s 17)((1, 2, 2,2, 1)) —

D?, the product of Dehn twists along the disjoint vanishinglegaepicted in Figule 32, is
the monodromy of the open book compatible Witl{56, 17), £..,). This monodromy has
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-4 -2 -2 -4 =2 -4 -2 -2 -4 =2

° ° ° - [ ° ° ° ®
-1 51 -1 1//\1 dual resolution graph

NS

Scott § 7

deformation

FIGURE 31. From dual resolution graph of a cyclic quotient singtyao
the Scott deformation of the decorated plane curve reptiegetine singu-
larity.
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FIGURE 32. The vanishing cycles of the planar Lefschetz fibration
Wesean ((1,2,2,2,1)) — D2

another positive factorization
D(75) D(74) D(73) D(7v2) D(@s) D(@i3) D(@i2) D(@),

which is the total monodromy of the planar Lefschetz fibmalit s 17)((2,1,4,1,2)) —
D? we discussed in Section 5.1.
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