
UNBRAIDED WIRING DIAGRAMS FOR STEIN FILLINGS OF LENS SPACES

MOHAN BHUPAL AND BURAK OZBAGCI

ABSTRACT. In a previous work [2], we constructed a planar Lefschetz fibration on each
Stein filling of any lens space equipped with its canonical contact structure. Here we de-
scribe an algorithm to draw anunbraidedwiring diagram whose associated planar Lef-
schetz fibration obtained by the method of Plamenevskaya andStarkston [10], where the
lens space with its canonical contact structure is viewed asthe contact link of a cyclic quo-
tient singularity, is equivalent to the Lefschetz fibrationwe constructed on each Stein filling
of the lens space at hand. Coupled with the work of Plamenevskaya and Starkston, we ob-
tain the following result as a corollary: The wiring diagramwe describe can be extended to
an arrangement of symplectic graphical disks inC2 with marked points, including all the
intersection points of these disks, so that by removing the proper transforms of these disks
from the blowup ofC2 along those marked points one recovers the Stein filling along with
the Lefschetz fibration. Moreover, the arrangement is related to the decorated plane curve
germ representing the cyclic quotient singularity by a smooth graphical homotopy.

As another application, we set up an explicit bijection between the Stein fillings of any
lens space with its canonical contact structure, and the Milnor fibers of the corresponding
cyclic quotient singularity, which was first obtained by Némethi and Popescu-Pampu [8],
using different methods.

1. INTRODUCTION

In their recent work, Plamenevskaya and Starkston [10] showed that every Stein filling
of the link of a rational surface singularity with reduced fundamental cycle, equipped with
its canonical contact structure, can be obtained from a configuration of symplectic graph-
ical disks inC2 with marked points including all the intersection points ofthese disks, by
removing the union of the proper transforms of these disks from the blowup ofC2 at the
marked points. Their purely topological proof relies on a theorem of Wendl [11], which im-
plies that each Stein filling of the contact singularity linkof the type above admits a planar
Lefschetz fibration overD2, since the contact link itself is supported by a planar open book
([1],[9]), and moreover, the Lefschetz fibration corresponds to a positive factorization of
the monodromy of this open book. In their proof, Plamenevskaya and Starkston developed
a method to reverse-engineer a braided wiring diagram producing any such factorization,
and then extended this diagram to an arrangement of symplectic graphical disks which,
in turn, gives the Stein filling along with the Lefschetz fibration via the method described
above (see Section 2 for more details of their construction).
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In the present paper, we focus on cyclic quotient singularities—a subclass of ratio-
nal surface singularities with reduced fundamental cycle.It is well-known that the ori-
ented link of any cyclic quotient singularity is orientation preserving diffeomorphic to
a lens spaceL(p, q). Let ξcan denote the canonical contact structure on the singularity
link L(p, q). In [7], Lisca classified the minimal symplectic fillings of the contact3-
manifold (L(p, q), ξcan), up to diffeomorphism, and also showed that any such filling of
(L(p, q), ξcan) is in fact a Stein filling. In [2], we constructed aplanar Lefschetz fibration
W → D2 on each Stein fillingW of (L(p, q), ξcan), by explicitly describing the ordered
set of vanishing cycles on a disk with holes. In this paper, our primary goal is to describe
an algorithm to draw a wiring diagram, which turns out to beunbraided, that corresponds
to each of these planar Lefschetz fibrations via the work of Plamenevskaya and Starkston.

Theorem 1. There is an algorithm to draw an explicit unbraided wiring diagram whose as-
sociated planar Lefschetz fibration obtained by the method of Plamenevskaya and Starkston
[10] is equivalent to the planar Lefschetz fibrationW → D2 constructed by the authors[2]
on each Stein fillingW of the contact3-manifold(L(p, q), ξcan).

As we mentioned in the first paragraph, Plamenevskaya and Starkston described an al-
gorithm (see [10, Section 5.4]) to obtain a braided wiring diagram from the ordered set of
vanishing cycles of a planar Lefschetz fibration, by reverse-engineering. Their algorithm
involves many choices (see [10, Remark 5.7]) and although wedo not rely on their reverse-
engineering algorithm here, we showindirectly that by appropriate choices, one can obtain
“unbraided” wiring diagrams, which means that all the braids in the diagram can be chosen
to be the identity.

The article of Plamenevskaya and Starkston was admittedly inspired by the work of
de Jong and van Straten [5], who studied the Milnor fibers and deformation theory of
sandwiched singularities—which includes rational surface singularities with reduced fun-
damental cycle. In their work, deformation theory of a surface singularity in the given
class is reduced to deformations of the germ of a reducible plane curve representing the
singularity.

In particular, to any cyclic quotient singularity germ, de Jong and van Straten associate
a decorated germ of a reduced plane curve singularityC = C1 ∪ · · · ∪ Cn ⊂ (C2, 0) with
smoothirreducible branches, where the decoration on eachCi is a certain positive integer,
which we omit here from the notation for simplicity. The outcome of de Jong and van
Straten’s construction is that there is a bijection betweenone-parameter deformations of
the cyclic quotient singularity and “picture deformations” of C representing that singularity
(see Section 2 for more details of their construction).

Moreover, Plamenevskaya and Starkston [10, Proposition 5.5], extends any given braided
wiring diagram (viewed as a collection of intersecting curves inR × C) to a collection of
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symplectic disks inC × C. Consequently, as a corollary to Theorem 1, we obtain the
following result coupled with [10, Proposition 5.8].

Corollary 2. For each Stein fillingW of the contact3-manifold(L(p, q), ξcan), there is
an explicit collection of symplectic graphical disksΓ1, . . . ,Γn in C2, with marked points
p1, . . . , pm ⊂

⋃
i Γi, which include all the intersection points of these disks, so that by

removing the union of the proper transformsΓ̃1, . . . , Γ̃n of Γ1, . . . ,Γn, from the blowup
of C2 at these marked points we obtainW along with the Lefchetz fibration mentioned in
Theorem 1. Moreover, the collection of symplectic graphical disksΓ1, . . . ,Γn is related
to the decorated plane curve germC = C1 ∪ · · · ∪ Cn ⊂ (C2, 0) representing the cyclic
quotient surface singularity at hand by a smooth graphical homotopy.

For each Stein fillingW of (L(p, q), ξcan), the symplectic graphical disk arrangement
Γ := Γ1 ∪ · · · ∪ Γn with marked pointsp1, . . . , pm ⊂ Γ in C2 described in Corollary 2
determines immediately them × n incidence matrixI(Γ, {pj}), defined so that its(i, j)-
entry is1 if pj ∈ Γi, and0 otherwise. Since there is no canonical labelling of the pointspj,
in general, the incidence matrix is only defined up to permutation of the columns.

Corollary 3. For each Stein fillingW of (L(p, q), ξcan), there is an iterative algorithm
to obtain the incidence matrixI(Γ, {pj}) for the symplectic graphical disk arrangement
Γ := Γ1 ∪ · · · ∪ Γn with marked pointsp1, . . . , pm ⊂ Γ in C2 described in Corollary 2.

As a matter of fact, one can read off the incidence matrix directly from the wiring dia-
gram from which the symplectic disk configuration arises. Asexplained in [10, Section 6]
and [5, Section 5], the incidence matrixI(Γ, {pj}) determines the fundamental group, the
integral homology and the intersection form ofW , as well as the first Chern class of the
Stein structure onW .

Note that each Milnor fiber of the cyclic quotient singularity is a Stein filling of its
boundary—which is the linkL(p, q) of the singularity, equipped with its canonical contact
structureξcan. In [8], Némethi and Popescu-Pampu showed that there is an explicit one-
to-one correspondence between Stein fillings of(L(p, q), ξcan) and Milnor fibers of the
corresponding cyclic quotient singularity, proving in particular a conjecture of Lisca [7].
As another application of Theorem 1, we obtain an alternate proof of their result formulated
as Corollary 4. We say that two (smooth) disk arrangements(Γ, {pj}) and(Γ′, {p′j}) in C

2

arecombinatorially equivalentif their incidence matrices coincide up to permutation of
columns, i.e. up to relabelling of the marked points.

Corollary 4. For each Stein fillingW of (L(p, q), ξcan), the arrangement of symplectic
graphical disks(Γ, {pj}), described in Corollary 2, is combinatorially equivalent to the
arrangement of the smooth branches of a picture deformationof the decorated plane curve
germC representing the corresponding cyclic quotient surface singularity, described by de
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Jong and van Straten[5]. This equivalence gives an explicit bijection between Stein fillings
of (L(p, q), ξcan) and Milnor fibers of the corresponding cyclic quotient singularity.

In other words, the wiring diagrams we obtain via Theorem 1 can be viewed as picture
deformations of the decorated plane curve germ representing the associated cyclic quotient
singularity. In Figure 1 below, we summarized the correspondence that takes each Stein
filling of (L(p, q), ξcan) given by Lisca to the Milnor fiber of the associated cyclic quotient
singularity described by de Jong and van Straten via a picture deformation of the decorated
plane curve representing the singularity.

Stein filling

Lefschetz fibration

Wiring diagram
Configuration of symp.
graphical disks inC2

Incidence matrix

picture deformation

Milnor fiber

FIGURE 1. From Lisca to de Jong and van Straten

It is well-known that for any contact singularity link(L(p, q), ξcan), the Milnor fiber of
the Artin smoothing component of the corresponding cyclic quotient singularity gives a
Stein filling which is Stein deformation equivalent to the one obtained by deforming the
symplectic structure on the minimal resolution (see [3]) ofthe singularity. In addition,
according to [5], there is a canonical picture deformation,called theScott deformation,
of the decorated plane curve germ which corresponds to the Artin smoothing. As a final
application of Theorem 1, we obtain a wiring diagram that represents the combinatorial
equivalence class of the Scott deformation.

Corollary 5. For the Milnor fiber of the Artin smoothing component of the cyclic quo-
tient singularity, the arrangement of symplectic disks given in Corollary 2, arising from the
wiring diagram described in Theorem 1, is combinatorially equivalent to the Scott defor-
mation of a decorated plane curve representing the singularity.

2. RATIONAL SINGULARITIES WITH REDUCED FUNDAMENTAL CYCLE, PICTURE

DEFORMATIONS, AND BRAIDED WIRING DIAGRAMS

In [8], Némethi and Popescu-Pampu showed that there is an explicit bijective correspon-
dence between Stein fillings of the link of a cyclic quotient singularity and Milnor fibres
of smoothing components of the given singularity, as conjectured by Lisca [7]. As cyclic
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quotient singularities are examples of sandwiched singularites, de Jong and van Straten’s
picture deformation construction (see [5]) can be used to describe these Milnor fibres. We
give a brief description of the construction of de Jong and van Straten here. As the theory
is easier to describe in the case of rational singularities with reduced fundamental cycle, a
class which contains cyclic quotient singularities, we will restrict attention to these.

Let (X, x) be the germ of a rational singularity with reduced fundamental cycle. De Jong
and van Straten associate to(X, x) a, possibly nonunique, decorated germ of a reduced
plane curve singularityC = C1 ∪ · · · ∪ Cn ⊂ (C2, 0) with smoothirreducible branches.
Each such singularity can be resolved by a finite sequence of blowups. For each branchCi,
letmi denote the number of timesCi, or its proper transform, is blown up in the minimal
resolution. For example, ifC consists of a collection of curves intersecting (pairwise)
transversally at0, thenmi = 1 for all i. The decoration onC consists of ann-tuple l =
(l1, . . . , ln) of positive integers such thatli ≥ mi for eachi. Given such a decorated curve
(C, l), one can recover the corresponding surface singularity as follows: Take the minimal
embedded resolution ofC and iteratively blow up the proper transform ofCi (li − mi)-
times on the preimage of0 for eachi. Under the condition thatli > mi for eachi, the
set of exceptional curves that do not meet the proper transform of C will be connected.
Collapsing them then gives the corresponding surface singularity.

Given a decorated curve(C, l), let C̃ = C̃1 ∪ · · · ∪ C̃n denote the normalization ofC
(which in our present situation is just the disjoint union ofthe irreducible components ofC).
Geometrically, one may think of the decorationl as a collection ofli marked points oñCi,
for eachi, all concentrated on the preimage of the singular point. Theoutcome of de Jong
and van Straten’s construction is that there is a one-to-onecorrespondence between one-
parameter deformations of(X, x) and “picture deformations” of(C, l). Roughly speaking,
a picture deformationof (C, l) consists of aδ-constant deformationCs = Cs

1 ∪ · · · ∪ Cs
n

of C, which in the present situation means that the branches ofC are deformed separately
and not allowed to merge, together with a redistributionls of the marked points so that we
have exactlyli marked points oñCs

i for eachi, whereC̃s
1 , . . . , C̃

s
n denote the irreducible

components of the normalizatioñCs of Cs. HereC0 = C and we require that fors 6= 0
the only singularities ofCs are ordinaryk-tuple points, for variousk, that is, transversal
intersections ofk smooth branches, and that each such multiple point is marked. There may
be additional “free” marked points on the branches ofCs. The Milnor fibre of the smoothing
associated to(Cs, ls) can then be constructed by blowing up all the marked points, taking
the complement of the proper transforms ofCs

1 , . . . , C
s
n and smoothing corners. Here the

Milnor fiber will be noncompact, but by working in a small ballcentered at the origin in
C2 we can obtain compact Milnor fibers.

The topological information from picture deformations canbe conveniently extracted by
using the notion of braided wiring diagrams. These were introduced by Cohen and Suciu
[4] in their study of complex hyperplane arrangements and have been used fruitfully by
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Plamenevskaya and Starkston [10] in their investigation ofunexpected Stein fillings in the
case of rational surface singularities with reduced fundamental cycle. We briefly describe
these next.

A braided wiring diagramis a collection of curvesfi : [0, 1] → R × C for 1 ≤ i ≤ n,
called wires, such thatfi(t) ∈ {t} × C. At finitely many interior pointst1, . . . , tm, a
subcollection of the wires may intersect with the remainingbeing disjoint, but at each such
point the wires intersecting are assumed to have distinct tangent lines. We will make the
further assumption that there is a numberε > 0 such that the positions of the wires above
the points0, 1 andti ± ε take the same given values inR ⊂ C and the restriction of each
wire fj to (ti − ε, ti + ε) is linear. Any braided wiring diagram can be made to satisfy this
assumption by a homotopy of braided wiring diagrams. Then the portions of the braided
wiring diagram betweenti − ε and ti + ε can be specified by declaring which adjacent
wires intersect and on the complementary intervals the wires may be braided. Moreover,
any wiring diagram will be presented by its projection ontoR × R ⊂ R × C, where the
secondR is the real part ofC.

We now describe how to obtain a braided wiring diagram from a picture deformation
(Cs, ls). By choosing coordinates ofC2 generically, we may assume that eachC0

i is graph-
ical, that is,C0

i = {(x, y) ∈ C2 | x ∈ D, y = fi(x)} for some complex functionfi, where
D is a small disk inC centered at0. For s > 0 sufficiently small, it follows that each
Cs
i is graphical. Letη1, . . . , ηm denote the images of the intersection points ofCs

1 , . . . , C
s
n

under the mapπx : C2 → C given by projecting onto the first coordinate and choose a
smooth curveγ : [0, 1] → D whose interior passes through these points such thatγ′(t) has
nonpositive real part for allt. Then(Cs

1 ∪ · · · ∪Cs
n) ∩ π

−1
x (γ) is a braided wiring diagram.

Next we review how Plamenevskaya and Starkston constructedplanar Lefschetz fibra-
tions based on a configuration of smooth disks inC

2; see [10, Lemma 3.2]. LetΓ1, . . . ,Γn
be smooth disks inC2 which are graphical with respect to the projectionπx. Assume that
whenever two or more of these disks meet at a point, they intersect transversally and posi-
tively with respect to the orientation on the graphΓi induced from the natural orientation on
C. Let p1, . . . , pm be the marked points on

⋃
i Γi which include all the intersection points,

and letΠ: C2#mCP 2 → C2 be the blow-up at the pointsp1, . . . , pm. If Γ̃1, . . . , Γ̃n denote
the proper transforms ofΓ1, . . . ,Γn, then

πx ◦ Π: C2#mCP 2 \ (Γ̃1, . . . , Γ̃n) → C

is a Lefschetz fibrationwhose regular fibers are punctured planes, where each puncture
corresponds to a componentΓ̃i. There is one vanishing cycle for each pointpj, which is
a curve in the fiber enclosing the punctures that correspond to the componentsΓi passing
throughpj.

Moreover, restricting to an appropriate Milnor ball inC2 that contains all the points
p1, . . . , pm one obtains a Lefschetz fibration whose fiber is a disk with holes, where the
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holes correspond to the componentsΓi and the vanishing cycles correspond to the pointspj
in the same way as described above. Furthermore, if thecurvettasCs

1 , . . . , C
s
n with marked

points are the result of a picture deformation of a germ associated to a surface singularity,
the Lefschetz fibration constructed as above is compatible with the complex structure on
the Milnor fiber of the corresponding smoothing.

2.1. From wiring diagrams to planar Lefschetz fibrations. Here we outline the method
of Plamenevskaya and Starkston that gives a set of ordered vanishing cycles associated to
any braided wiring diagram, which in turn determines a planar Lefschetz fibration on the
associated Stein fillings; see [10, Section 5.2]. In this paper, we will only deal with wiring
diagrams without any braids and we will call themunbraidedwiring diagrams. In the
following, we describe their method for the case of unbraided wiring diagrams.We should
emphasize that our conventions will be different from thoseof [10], for the purposes of this
paper.We denote the marked points (consisting of intersection points and free points) byxi,
and enumerate them according to their geometric position from right to left, as illustrated
in Figure 2.

x1

x3

x4

x2

FIGURE 2. An example of anunbraidedwiring diagram without any free points.

For each marked pointxs in the wiring diagram, there is a convex curveδ(xs) in Dk

enclosing a certain set of adjacent holes, which is determined as follows.

Definition 6. (Convex curve assigned to a marked point)Suppose that the marked point
xs is a simultaneous intersection point of some geometricallyconsecutive wires in a given
wiring diagram. The convex curveδ(xs) encircling the adjacent holes whose geometric
order from the top inDk coincides with the local geometric order of the wires simultane-
ously intersecting at that marked point is called the convexcurve assigned toxs. If xs is a
free marked point on a single wire, then the convex curveδ(xs) assigned toxs is the curve
which is parallel to a single interior boundary component ofDk whose order from the top
coincides with the local geometric order of the wire.

For example, in Figure 2, the geometrically top four wires intersect at the marked point
x4; the geometrically top two wires intersect at the marked point x3; the geometrically bot-
tom two wires intersect at the marked pointx2 and the geometrically second and third wires
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intersect at the marked pointx1. It follows that the convex curvesδ(x4), δ(x3), δ(x2), δ(x1)
depicted in Figure 3 are assigned to the marked pointsx4, x3, x2, x1, respectively, in Fig-
ure 2.

δ(x3)

δ(x1)

δ(x2)

δ(x4)

FIGURE 3. Convex curves inD5 assigned to the marked points in Figure 2.

For each marked pointxs in the wiring diagram, there is a counterclockwise half-twist
∆(xs) : Dk → Dk, which is determined as follows.

Definition 7. (Counterclockwise half-twist corresponding to a marked point) The counter-
clockwise half-twist∆(xs) along the subdisk inDk enclosed by the convex curveδ(xs) is
called the counterclockwise half-twist corresponding toxs.

Suppose that a wiring diagram hask wires andr marked pointsxr, xr−1, . . . , x1, reading
from left to right. According to [10], for each1 ≤ s ≤ r, there is a vanishing cycleV (xs)
in Dk associated to the marked pointxs, which is determined as follows.

Definition 8. (Vanishing cycle associated to a marked point)For each2 ≤ s ≤ r, the
vanishing cycleV (xs) associated to the marked pointxs is the curve inDk given as

∆(x1) ◦ · · · ◦∆(xs−1)(δ(xs)),

andV (x1) = δ(x1).

For example, the vanishing cycles for the marked points in Figure 2 are calculated as
follows. The curveV (x4) = ∆(x1) ◦ ∆(x2) ◦ ∆(x3)(δ(x4)) is illustrated in Figure 4.
Similarly,V (x3) = ∆(x1) ◦∆(x2)(δ(x3)) is illustrated in Figure 5. Finally, the vanishing
cycleV (x2) = ∆(x1)(δ(x2)) = δ(x2) andV (x1) = δ(x1) by definition.

3. PLANAR LEFSCHETZ FIBRATIONS ONSTEIN FILLINGS OF LENS SPACES

3.1. Symplectic fillings of lens spaces.In [7], Lisca classified the minimal symplectic
fillings of the contact3-manifold (L(p, q), ξcan), up to diffeomorphism. It turns out any
minimal symplectic filling of(L(p, q), ξcan) is in fact a Stein filling. We first briefly review
Lisca’s classification [7] of Stein fillings of(L(p, q), ξcan), up to diffeomorphism.



UNBRAIDED WIRING DIAGRAMS FOR STEIN FILLINGS OF LENS SPACES 9

δ(x4)

V (x4)

∆(x3) ∆(x2) ∆(x1)

FIGURE 4. Starting fromδ(x4), we apply a counterclockwise half-twist on
the subdisk enclosed by the dotted curve, at each step, goingfrom left to
right.

δ(x3)

V (x3)

∆(x1)∆(x2)

FIGURE 5. Starting fromδ(x3), we apply a counterclockwise half-twist on
the subdisk enclosed by the dotted curve, at each step, goingfrom left to
right.

Definition 9. (Blowup of a tuple of positive integers)For any integerr ≥ 2, a blowup of
an r-tuple of positive integers at theith term is a mapϕi : Zr+ → Z

r+1
+ defined by

(n1, . . . , ni, ni+1, . . . , nr) 7→ (n1, . . . , ni−1, ni + 1, 1, ni+1 + 1, ni+2, . . . , nr)

for any1 ≤ i ≤ r − 1 and by

(n1, . . . , nr) 7→ (n1, . . . , nr−1, nr + 1, 1)

wheni = r. The case when1 ≤ i ≤ r − 1 is called an interior blowup, whereas the case
i = r is called an exterior blowup. We also say that(0) → (1, 1) is the initial blowup.

Suppose thatp > q ≥ 1 are coprime integers and let

p

p− q
= [b1, b2, . . . , bk] = b1 −

1

b2 −
1

.. . −
1

bk



10 MOHAN BHUPAL AND BURAK OZBAGCI

be the Hirzebruch-Jung continued fraction, wherebi ≥ 2 for 1 ≤ i ≤ k. Note that the
sequence of integers{b1, b2 . . . , bk} is uniquely determined by the pair(p, q).

For anyk ≥ 2, ak-tuple of positive integers(n1, . . . , nk) is calledadmissibleif each of
the denominators in the continued fraction[n1, . . . , nk] is positive, where we do not assume
thatni ≥ 2. For anyk ≥ 2, let Zk ⊂ Zk denote the set of admissiblek-tuples of positive
integersn = (n1, . . . , nk) such that[n1, . . . , nk] = 0 and letZ1 = {(0)}. As a matter
of fact, anyk-tuple of positive integers inZk can be obtained from(0) by a sequence of
blowups as observed by Lisca [7, Lemma 2]. Note that the only possible blowup of(0) is
the initial blowup(0) → (1, 1). Let

Zk(
p

p−q
) = {(n1, . . . , nk) ∈ Zk | 0 ≤ ni ≤ bi for i = 1, . . . , k}.

Next, for everyk-tuplen = (n1, . . . , nk) ∈ Zk(
p

p−q
), we describe a4-manifoldWp,q(n)

whose boundary is orientation-preserving diffeomorphic to L(p, q). We start with a chain
of unknots inS3 with framingsn1, n2, . . . , nk, respectively. It can be easily verified that
the result of Dehn surgery on this framed link, which we denoteN(n), is diffeomorphic
to S1 × S2. Let L =

⋃k
i=1 Li denote the framed link inN(n) depicted in red in Figure 6,

where eachLi hasbi − ni components.

n1 n2 nk−1 nk

b1 − n1 b2 − n2 bk−1 − nk−1 bk − nk

−1−1 −1 −1−1−1 −1−1 −1 −1−1 −1

FIGURE 6. The relative handlebody decomposition of the4-manifoldW(p,q)(n).

SinceN(n) is diffeomorphic toS1 × S2, one can fix a diffeomorphismφ : N(n) →
S1×S2. By attaching2-handles toS1×D3 along the framed linkφ(L) ⊂ S1×S2, we obtain
a smooth4-manifoldWp,q(n) whose boundary is orientation-preserving diffeomorphic to
L(p, q). As noted by Lisca, the diffeomorphism type ofWp,q(n) is independent of the
choice ofφ since any self-diffeomorphism ofS1 × S2 extends toS1 ×D3.

According to Lisca, any minimal symplectic filling (in fact Stein filling) of (L(p, q), ξcan)
is orientation-preserving diffeomorphic toWp,q(n) for somen ∈ Zk(

p

p−q
).

3.2. Planar Lefschetz fibrations on Stein fillings. In [2], we described an algorithm to
construct a planar Lefschetz fibrationWp,q(n) → D2, based on any given blowup sequence

(0) → (1, 1) → · · · → n = (n1, . . . , nk) ∈ Zk(
p

p− q
).
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Here we briefly review our algorithm, which consists of two parts,stabilizationandsurgery,
that gives an ordered set of vanishing cycles on a disk withk holes which is the fiber of our
Lefschetz fibrationWp,q(n) → D2. We begin by describing the first part of our algorithm
which we call the stabilization algorithm.

3.2.1. The stabilization algorithm.For any positive integerr, letDr denote the disk with
r holes. We assume that the holes are aligned horizontally onDr and we enumerate the
holes onDr from left to right asH1, H2, . . . , Hr.

The initial step of the algorithm corresponding to(0) is the diskD1 with no vanishing
cycle, as depicted on the top in Figure 7. Recall that the onlyblowup starting from(0) is
the initial blowup(0) → (1, 1). The corresponding fiber is the diskD2 with one vanishing
cycleα1, which is parallel to the boundary ofH1, as depicted in the middle in Figure 7.
This is a stabilization of the previous step, where we had theannulusD1 with no vanishing
cycle. Depending on the type of the next blowup, we proceed asfollows.

1 2

1 2 3 1 2 3

1

(1, 1)

(2, 1, 2) (1, 2, 1)

interior blowup exterior blowup

initial blowup

α1

α1α1
α2α2

(0)

FIGURE 7. Stabilizations depending on the type of the blowup.

If we have an interior blowup at the first term(1, 1) → (2, 1, 2), thenH2 “splits” into two
holes, where the new holeH3 is placed to the right ofH2. The curveα1 becomes a convex
curve enclosingH2 andH3 in D3. We introduce a new vanishing cycleα2 which encloses
H1 andH3 in D3 as shown at the bottom left in Figure 7. We can view the introduction of
α2 as a stabilization of the previous step.

On the other hand, if we have an exterior blowup(1, 1) → (1, 2, 1), then we simply
introduce a new holeH3 to the right, and the new vanishing cycleα2 is parallel to the
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boundary ofH3 in D3 as shown at the bottom right in Figure 7. Again, we can view the
introduction ofα2 as a stabilization of the previous step.

Now suppose that we have a set ofr−1 vanishing cyclesα1, α2, . . . , αr−1 on a disk with
r holes corresponding to some blowup sequence

(0) → (1, 1) → · · · → (n1, . . . , nr).

Depending on the type of the next blowup we insert a new hole and introduce a new van-
ishing cycleαr as follows.

If we have an interior blowup at theith term, for1 ≤ i ≤ r−1, then the holeHi+1 “splits”
into two holes, where the new holeHi+2 is placed to the right ofHi+1 in the resulting disk
Dr+1. We introduce a new vanishing cycleαr which encloses the holesH1, H2, . . . , Hi and
the new holeHi+2 in Dr+1. We can view the introduction ofαr as a stabilization of the
previous step.

On the other hand, if we have an exterior blowup, then we simply insert a new holeHr+1

to the right, which is the last hole in the geometric order from the left in the resulting disk
Dr+1 and the new vanishing cycleαr is parallel to the boundary ofHr+1. Again, we can
view the introduction ofαr as a stabilization of the previous step.

Next, we describe the second part of our algorithm which we call the surgery algorithm.

3.2.2. The surgery algorithm.The surgery algorithm is based on the linkL =
⋃k

i=1 Li,
which is used to defineWp,q(n). The vanishing cycles in this subsection will be mutually
disjoint and hence their order does not matter. So we can describe all the vanishing cycles
as a set of curves on the diskDk with k holes.

Definition 10. (The γ-curves)For each1 ≤ i ≤ k, let γi be the convex curve onDk

enclosing the holesH1, H2, . . . , Hi.

Then the set of vanishing cycles in this part of the algorithmis

{γ1, . . . , γ1︸ ︷︷ ︸
b1−n1

, γ2, . . . , γ2︸ ︷︷ ︸
b2−n2

, . . . , γk, . . . γk︸ ︷︷ ︸
bk−nk

},

where eachγi appearsbi − ni times in the set. In particular, ifbi = ni, thenγi is not in the
set of vanishing cycles.

3.2.3. Total monodromy.The fiber of the planar Lefschetz fibrationWp,q(n) → D2 is the
diskDk with k holes, wherek is the length of the continued fractionp

p−q
= [b1, b2 . . . , bk].

The set of vanishing cycles consists of the curvesα1, α2, . . . , αk−1 coming from the sta-
bilization algorithm andγ1, γ2, . . . , γk (each with a multiplicity) coming from the surgery
algorithm. LetD(α) denote the right-handed twist along a simple closed curveα on a
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surface. The total monodromy of the planar Lefschetz fibrationWp,q(n) → D2 is given as
the following composition of Dehn twists along the vanishing cycles

D(α1)D(α2) · · ·D(αk−1)D
b1−n1(γ1)D

b2−n2(γ2) · · ·D
bk−nk(γk).

In Lemma 11 below, we describe another planar Lefschetz fibration onWp,q(n).

Lemma 11. Let f : Wp,q(n) → D2 be the planar Lefschetz fibration we constructed in
[2]. The total space of the planar Lefschetz fibration obtained by reversing the order of the
vanishing cycles off , while taking their mirror images is diffeomorphic toWp,q(n).

Proof. The result follows from the fact that such a transformation of the vanishing cycles
can be achieved by rotating the absolute handlebody diagraminducing the planar Lefschetz
fibration constructed in [2]. To see this, consider for example the handlebody diagram in
[2, Figure 7], which is depicted on the left-hand side in Figure 8.

Rotate by180◦

FIGURE 8. By rotating the handlebody diagram180◦ in a directionnormal
to the page, we obtain the mirror images of the vanishing cycles in reverse
order.

By rotating this handlebody diagram180◦ in a directionnormal to the page, we get the
handlebody diagram on the right-hand side whose total spaceis still the same. But this new
handlebody diagram corresponds to a planar Lefschetz fibration, where the mirror images
of the vanishing cycles appear in reverse order. Note that here we view the base diskDk

“horizontally” and the mirror imageα of a curveα ⊂ Dk is defined to be the reflection
of α along thex-axis, once the holes inDk are aligned horizontally along thex-axis. This
definition of mirror image, of course, coincides with the mirror image in a verticalDk by
rotating the horizontalDk clockwise by90◦. �
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3.3. An example. For p = 56 andq = 17, we have
56

56− 17
= [2, 2, 5, 2, 3]. The5-tuple

n = (2, 1, 4, 1, 2) belongs toZ5(
56

56−17
) since we have the blowup sequence

(0) → (1, 1) → (1, 2, 1) → (2, 1, 3, 1) → (2, 1, 4, 1, 2)

and hence we conclude thatW(56,17)((2, 1, 4, 1, 2)) is a Stein filling of the contact3-manifold
(L(56, 17), ξcan). The fiber of the planar Lefschetz fibration

W(56,17)(2, 1, 4, 1, 2) → D2

is the diskD5 with 5 holes, and to obtain the vanishing cyclesα1, α2, α3, α4 coming
from the stabilization algorithm, we start from the step(1, 2, 1) which is already shown
at the bottom right in Figure 7 and apply the stabilization algorithm to the interior blowups
(1, 2, 1) → (2, 1, 3, 1) → (2, 1, 4, 1, 2) as depicted in Figure 9.

5

41

1

2

2

3

3

1 2 3

4

(2, 1, 4, 1, 2)

(2, 1, 3, 1)
(1, 2, 1)

α2α1

α1

α1 α2

α2

α4

α3

α3

FIGURE 9. The vanishing cyclesα1, α2, α3, α4 coming from the stabiliza-
tion algorithm.

Note thatb1 − n1 = 0, whereasb2 − n2 = b3 − n3 = b4 − n4 = b5 − n5 = 1, which
implies that the set of vanishing cycles coming from the surgery algorithm in this case is
γ2, γ3, γ4 andγ5 as shown in Figure 10.

Consequently, the total monodromy is given as the follows

D(α1)D(α2)D(α3)D(α4)D(γ2)D(γ3)D(γ4)D(γ5).

Remark 12. By Lemma 11, there is a planar Lefschetz fibrationW(56,17)(2, 1, 4, 1, 2) → D2

whose monodromy factorization is given by

D(γ5)D(γ4)D(γ3)D(γ2)D(α4)D(α3)D(α2)D(α1).
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51 2 3 4

D5

γ2 γ3 γ5γ4

FIGURE 10. The vanishing cyclesγ2, γ3, γ4, γ5 coming from the surgery algorithm.

4. UNBRAIDED WIRING DIAGRAMS

4.1. The blowup algorithm. In this subsection, we describe an algorithm to construct
an unbraided wiring diagram corresponding to a blowup sequence starting from the initial
blowup(0) → (1, 1). The wiring diagram corresponding to(0) is a single wirew1 without
any marked points and the wiring diagram corresponding to(1, 1), consists of two parallel
wires{w1, w2} so thatw1 is on top without any marked points, andw2 has a single marked
pointx1. The next step in the algorithm depends on whether we have an interior or exterior
blowup that follows the initial blowup(0) → (1, 1).

If we have an interior blowup at the first term(1, 1) → (2, 1, 2) we introduce a new wire
w3, which is initially beloww2 on the right-hand side of the diagram and as it moves to the
left, it goes through the marked pointx1 onw2, but otherwise remains parallel tow2 and
then intersectsw1 at a new marked pointx2, which is to the left ofx1. This diagram with
three wires{w1, w2, w3} corresponds to(2, 1, 2), which we depicted in Figure 11.

(0) (1, 1) (2, 1, 2)

x1 x2

x1

w1 w1w1

w2w2

w3

FIGURE 11. Wiring diagrams corresponding to the blowup sequence(0) →
(1, 1) → (2, 1, 2).

On the other hand, if we have an exterior blowup(1, 1) → (1, 2, 1), we insert in the
diagram a new wirew3 which is right beloww2 and parallel to it. We place a marked
point x2 onw3 so thatx2 is to the left ofx1. This diagram with three wires{w1, w2, w3}
corresponds to(1, 2, 1), which we depicted in Figure 12.

Now suppose that we have an unbraided wiring diagramW consisting ofrwires{w1, w2,
. . . , wr} corresponding to some blowup sequence starting from the initial blowup (0) →
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(0) (1, 1) (1, 2, 1)

x1 x1

x2

w1 w1w1

w2w2

w3

FIGURE 12. Wiring diagrams corresponding to the blowup sequence(0) →
(1, 1) → (1, 2, 1).

(1, 1) and ending with somer-tuple of positive integers. We would like to emphasize
that the indices of the wires in the setW above indicate the order in which the wires are
introduced into the diagram. Depending on the type of the next blowup we insert a new
wire inW and adjust the diagram accordingly as follows.

Suppose that we have an interior blowup at theith term, for some1 ≤ i ≤ r − 1. Let
wj ∈ W be the(i + 1)st wire with respect to thegeometric orderingof the wires on the
right-hand side of the diagram, and letWi denote the subset ofW consisting of all the
wires which appears beforewj in this ordering. In other words,Wi is the set of the topi
wires in the geometric ordering of the wires on the right-hand side of the diagram. Now we
introduce a new wire, namedwr+1, into the diagram, which is initially right belowwj on
the right-hand side of the diagram and as it moves to the left,goes through all the marked
points onwj but otherwise remains parallel towj , and then we insert a new marked point
xr on wr+1 which is the simultaneous intersection ofwr+1 and all the wires inWi. We
place the marked pointxr to the left ofxr−1. For this to work, we need to know that the set
Wi ∪ {wr+1} of wires is geometrically consecutive on the left-hand side, which we verify
in Lemma 13 below, where we refer to this step in the algorithmas thelast twist.

On the other hand, if we have an exterior blowup, we insert a new wire wr+1 below all
the wires inW with no intersection points with the other wires, and place asingle marked
pointxr onwr+1, which is to the left ofxr−1.

We call this procedure the blowup algorithm for wiring diagrams. Note that in the re-
sulting wiring diagram, the wires are indexed in the order they are introduced into the
diagram but their geometric ordering on the right-hand side(or the left-hand side) of the
diagram as viewed on the page, might be different from the index ordering. Moreover, by
our algorithm,w1 will always be at the top on the right-hand side of the diagram.

Lemma 13. If W is an unbraided wiring diagram consisting of wires{w1, w2, . . . , wr},
which is obtained by the blowup algorithm with respect to some blowup sequence starting
from the initial blowup(0) → (1, 1), then any set of wires includingw1, which is con-
secutive with respect to the geometric ordering on the right-hand side of the diagram, is
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also geometrically consecutive (perhaps with a different geometric ordering) on the left-
hand side of the diagram. Moreover, if any wire other thanw1 carries an even (resp. odd)
number of marked points, then on the left-hand side it is above (resp. below) all the wires
which appear before it in the geometric ordering of the wireson the right-hand side of the
diagram.

Proof. We prove the lemma by induction on the number of wires. The twowiring diagrams
we described above corresponding to the blowup sequences(0) → (1, 1) → (2, 1, 2) and
(0) → (1, 1) → (1, 2, 1), respectively, can be taken to be the initial step of our induction
argument. The properties stated in Lemma 13 hold for these wiring diagrams.

Suppose that both properties stated in Lemma 13 hold when there are up tor ≥ 3
wires in any unbraided wiring diagram obtained as a result ofthe blowup algorithm with
respect to some blowup sequence starting from the initial blowup (0) → (1, 1). We will
prove that these properties continue to hold when a new wire is inserted into the diagram
corresponding to a new blowup. If the new wire inserted corresponds to an exterior blowup,
it is clear that both properties stated in Lemma 13 continue to hold in the new diagram with
r + 1 wires. This is because in this case, the new wire will be inserted at the bottom of
the diagram with a single marked point on it and without any intersections with the other
wires.

Suppose that a new wirewr+1 is inserted intoW with respect to an interior blowup at
the ith term, for some1 ≤ i ≤ r − 1. Let Ws be the subset ofW consisting of the tops
wires in thegeometric orderingof the wires on the right-hand side of the diagram. Note
thatWi+1 = Wi ∪ {wj}, since by definition,wj ∈ W is the(i+ 1)st wire with respect to
the geometric ordering of the wires on the right-hand side ofthe diagram.

Assume thatwj has an odd number of marked points. By the induction hypotheses,
before we insertwr+1, the wires in the setWi+1 are geometrically consecutive (perhaps
with a different geometric ordering) on the left-hand side,whilewj is at the bottom of these
geometrically consecutive wires. The new wirewr+1 will be initially right below the wire
wj on the right-hand side of the diagram andwr+1 will go through all the marked points
on wj, and otherwise it will remain parallel towj, before the last twist in the algorithm.
But sincewj has an odd number of marked points, andwr+1 is initially right belowwj,
the wirewr+1 will be right abovewj on the left-hand side before the last twist. Therefore,
before the last twist, the wires in the setWi+1 ∪ {wr+1} will be geometrically consecutive
on the left-hand side, and moreoverwr+1, wj will be the bottom two wires in that order.
Finally, when we twist once all the wires in the setWi ∪ {wr+1} (to create a simultaneous
intersection point of thesei+ 1 wires) as part of the blowup algorithm, the wires in the set
Wi+1 ∪ {wr+1} will remain geometrically consecutive on the left-hand side, wherewr+1

will appear at the top, andwj will appear at the bottom of this consecutive set of wires.
Assume thatwj has an even number of marked points. By the induction hypotheses,

before we insertwr+1, the wires in the setWi+1 is geometrically consecutive (perhaps
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with a different geometric ordering) on the left-hand side,while wj is at the top of these
geometrically consecutive wires. The new wirewr+1 will be initially right below the wire
wj on the right-hand side of the diagram andwr+1 will go through all the marked points on
wj, and otherwise it will remain parallel towj , before the last twist in the algorithm. But
sincewj has an even number of marked points, andwr+1 is initially right belowwj, the wire
wr+1 will be right belowwj on the left-hand side before the last twist. Therefore, before the
last twist, the wires in the setWi+1 ∪{wr+1} will be geometrically consecutive on the left-
hand side and, moreover,wj, wr+1 will be the top two wires in that order. Finally, when we
twist once all the wires in the setWi ∪ {wr+1} (to create a simultaneous intersection point
of thesei + 1 wires) as part of the blowup algorithm, the wires in the setWi+1 ∪ {wr+1}
will remain geometrically consecutive on the left-hand side, wherewj will appear at the
top, andwr+1 will appear at the bottom of this consecutive set of wires.

The discussion above proves that, after we insertwr+1, any set of wires inW ∪ {wr+1}
includingw1, which is consecutive with respect to the geometric ordering on the right-hand
side of the diagram, is also geometrically consecutive (perhaps with a different geometric
ordering) on the left-hand side of the diagram.

Moreover, ifwj has an odd (resp. even) number of marked points, thenwr+1 will have
even (resp.odd) number of marked points by the blowup algorithm and it will be above
(resp. below) all the wires inWi+1 on the left-hand side of the diagram. The upshot
is that both properties stated in Lemma 13 hold true for the unbraided wiring diagram
W ∪ {wr+1}. �

4.2. An example. Consider the blowup sequence

(0) → (1, 1) → (1, 2, 1) → (2, 1, 3, 1) → (2, 1, 4, 1, 2).

In Figure 13 below we depict the diagrams corresponding to

(1, 2, 1) → (2, 1, 3, 1) → (2, 1, 4, 1, 2)

starting from the diagram of(1, 2, 1) already depicted in Figure 12.

4.3. The twisting algorithm. Suppose thatW is an unbraided wiring diagram consisting
of wires{w1, w2, . . . , wk}, which is obtained by the blowup algorithm with respect to some
blowup sequence, starting from the initial blowup(0) → (1, 1) and ending with somek-
tuple of positive integers. LetWs be the subset ofW consisting of the tops wires in the
geometric orderingof the wires on the right-hand side of the diagram, as in Section 4.1.
Based on anyk-tuplem = (m1, . . . , mk), wheremi is a nonnegative integer, we describe
a procedure called thetwisting algorithmto extend the unbraided wiring diagramW to
another unbraided wiring diagramW(m) with the same number of wires but with more
marked points obtained by extra twists inserted to the left.
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(1, 2, 1) (2, 1, 3, 1) (2, 1, 4, 1, 2)

x1

x1x1

x3 x3

x4x2

x2

x2

w1 w1 w1

w3

w3 w3

w2 w2 w2

w4 w4

w5

FIGURE 13. Wiring diagrams corresponding to the blowup sequence
(1, 2, 1) → (2, 1, 3, 1) → (2, 1, 4, 1, 2).

If m1 = 0, then we do not modifyW and move onto the next step. Ifm1 > 0, then
we simply addm1 extra marked pointsy1, y1, . . . , y1︸ ︷︷ ︸

m1

onw1 to the left ofxk−1. If m2 = 0,

then we do not modify the diagram any further and move onto thenext step. Ifm2 > 0,
then by Lemma 13, we know that the wires inW2 are geometrically consecutive on the
left-hand side of the diagramW. We extendW by twistingm2-times the wires inW2,
creating consecutive simultaneous intersection pointsy2, y2, . . . , y2︸ ︷︷ ︸

m2

to the left of the last, if

any,y1. If m3 = 0, then we do not modify the diagram any further and move onto the next
step. Now suppose thatm3 > 0. Since the wires inW3 are geometrically consecutive on
the left-hand side of the diagramW by Lemma 13 these wires will remain geometrically
consecutive after the first additional twists we possibly put into the diagram corresponding
to m2. We extend the diagram further by twistingm3-times the wires inW3, creating
simultaneous intersection pointy3, y3, . . . , y3︸ ︷︷ ︸

m3

to the left of the last, if any,y2. By iterating

this procedure, we extendW toW(m) with additional marked points corresponding tom.

Remark 14. Here, we think ofmi as the “multiplicity” of the pointyi. If mi = 0, then
yi does not appear in the diagram, and ifmi > 1, thenyi is repeatedmi-times. To avoid
cumbersome notation, we do not put an extra index to distinguish between differentyi type
points.

4.4. An example. Here we give an example where we extend the wiring diagramW cor-
responding to the blowup sequence

(0) → (1, 1) → (1, 2, 1) → (2, 1, 3, 1) → (2, 1, 4, 1, 2)

depicted in Figure 13 toW(m) applying the twisting algorithm based onm = (0, 1, 1, 1, 1).
Note that inside the dotted square in Figure 14, there is a copy of W from Figure 13.
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W

y3

x1y2

x3

x4

y5
y4

x2

w1

w3

w2

w4

w5

FIGURE 14. ExtendingW to W((0, 1, 1, 1, 1)) by applying the surgery al-
gorithm based onm = (0, 1, 1, 1, 1).

In this examplem1 = 0 andm2 = 1 and the wiresW2 = {w1, w2} are geometrically
consecutive on the left-hand side ofW. Now we twist them together once to obtain the
marked pointy2, which is to the left ofx4. Sincem3 = 1, next we twist the wires in
W3 = {w1, w2, w4} (which are geometrically consecutive) together once to obtain the
marked pointy3, which is to the left ofy2. Sincem4 = 1, we twist the wires inW4 =
{w1, w2, w4, w3} (which are geometrically consecutive) together once to obtain the marked
pointy4, which is to the left ofy3. Finally, sincem5 = 1, we twist all the wires inW5 = W
together once to obtain the marked pointy5, which is to the left ofy4, as illustrated in
Figure 14.

Remark 15. We will also speak aboutδ(ys), ∆(ys) andV (ys) for each marked pointys in
the rest of the paper, as described in Definitions 6, 7, and 8.

5. FROM VANISHING CYCLES TO UNBRAIDED WIRING DIAGRAMS

We recall the main theorem from the introduction, where we have replacedW with
Wp,q(n) below, to be more precise.

Theorem 1. There is an algorithm to draw an explicit unbraided wiring diagram whose
associated planar Lefschetz fibration obtained by the method of Plamenevskaya and Stark-
ston[10] is equivalent to the planar Lefschetz fibrationWp,q(n) → D2 constructed by the
authors in[2].

Before we give the proof of Theorem 1 below, we illustrate thestatement and its proof on
an example. First we introduce some notation that will be used in the following discussion.
The diskDk with k holes will be viewed in two different but equivalent ways as follows:
(i) the holes are aligned horizontally inDk and enumerated from left to right or (ii) the
holes are aligned vertically inDk and enumerated from top to bottom. Here we identify
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the “horizontal”Dk in (i) with the “vertical” Dk in (ii) by rotating the “horizontal”Dk

clockwise by90◦. The reason why we consider these two embeddings of a disk with holes
is that the vanishing cycles in [2] are described on a horizontal Dk, while the vanishing
cycles in [10] are described on a verticalDk. Here we compare them on a verticalDk via
the identification given above. When we viewDk vertically, the mirror imageα of a curve
α ⊂ Dk is defined to be the reflection ofα along they-axis, once the holes inDk are
aligned vertically along they-axis.

5.1. An example. In Section 3.3, we constructed a planar Lefchetz fibration

W(56,17)((2, 1, 4, 1, 2)) → D2

whose fiber is the diskD5 with 5 holes and whose vanishing cycles are the curves

α1, α2, α3, α4, γ2, γ3, γ4, γ5

in D5, which are depicted in Figures 9 and 10. We claim that the planar Lefschetz fibration
obtained by using the method of Plamenevskaya and Starkstonassociated to the unbraided
wiring diagramW ((0, 1, 1, 1, 1)) in Figure 14 has exactly the same set of vanishing cycles
(viewed in a verticalD5), except that we have to take “mirror images” of all the curves and
reverse the orderof the vanishing cycles in the total monodromy. In other words, first we
rotate the disks in Figures 9 and 10 clockwise by90◦ and then take the mirror images of the
curves. This modification of the vanishing cycles is not an issue by Lemma 11. Note that
the mirror image of aγ-curve is equal to itself, and hence we only need to take the mirror
images of theα-curves. As a matter of fact, we claim thatV (yj) = γj, for 2 ≤ j ≤ 5
andV (xi) = αi, for 1 ≤ i ≤ 4 (see Remark 15 for notation). To verify our claim, we
apply the method of Plamenevskaya and Starkston (see Section 2), to describe a set of
ordered vanishing cycles associated to the marked points inFigure 14, where we depicted
the convex curves assigned to the marked points in Figure 15.

Note that

V (y5) = ∆(x1) ◦ · · · ◦∆(x4) ◦∆(y2) ◦∆(y3) ◦∆(y4)(δ(y5)) = δ(y5) = γ5,

V (y4) = ∆(x1) ◦ · · · ◦∆(x4) ◦∆(y2) ◦∆(y3)(δ(y4)) = γ4, as illustrated in Figure 16,

V (y3) = ∆(x1) ◦ · · · ◦∆(x4) ◦∆(y2)(δ(y3)) = γ3, as illustrated in Figure 17, and

V (y2) = ∆(x1) ◦ · · · ◦∆(x4)(δ(y2)) = γ2, as illustrated in Figure 18.

Remark 16. In Figure 16, we have not includedδ(y2) and δ(y3) as dotted curves since
∆(y2) ◦ ∆(y3) would not have any effect onδ(y4). Similarly, we have not includedδ(y2)
as a dotted curve in Figure 17 since∆(y2) would not have any effect onδ(y3). We will
generalize this observation as Lemma 19 in Section 5.2.1.
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δ(y2)

δ(y3)

δ(y5)

δ(x3)

δ(x1)

δ(x2)

δ(x4)

δ(y4)

FIGURE 15. Convex curves inD5 assigned to the marked points in Figure 14.

δ(y4)

γ4

FIGURE 16. Starting fromδ(y4), we apply a counterclockwise half-twist
on the subdisk enclosed by the dotted curve, at each step fromleft to right.

δ(y3)

γ3

FIGURE 17. Starting fromδ(y3), we apply a counterclockwise half-twist
on the subdisk enclosed by the dotted curve, at each step fromleft to right.

Moreover,V (x4) = α4 by comparing Figure 9 and Figure 4;V (x3) = α3 by comparing
Figure 9 and Figure 5, and finallyV (x2) = δ(x2) = α2 = α2 andV (x1) = δ(x1) =
α1 = α1, by comparing Figure 9 and Figure 3. Note that the total monodromy of the planar
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δ(y2)
γ2

FIGURE 18. Starting fromδ(y2), we apply a counterclockwise half-twist
on the subdisk enclosed by the dotted curve, at each step fromleft to right.

Lefschetz fibration is

D(γ5)D(γ4)D(γ3)D(γ2)D(α4)D(α3)D(α2)D(α1),

which coincides with the monodromy in Remark 12.
Now we are ready to give a proof of Theorem 1.

5.2. Proof of the main result. Suppose thatp > q ≥ 1 are coprime integers and let
p

p− q
= [b1, b2, . . . , bk]

be the Hirzebruch-Jung continued fraction, wherebi ≥ 2 for 1 ≤ i ≤ k. We set

b = (b1, b2, . . . , bk).

Definition 17. (The wiring diagramsWn, andWn(m)) For any

n = (n1, n2, . . . , nk) ∈ Zk(
p

p−q
)

let (0) → (1, 1) → · · · → n be a blowup sequence, and letm = b − n. We denote
by Wn, the unbraided wiring diagram withk wires {w1, w2, . . . , wk} and k − 1 marked
pointsxk−1, xk−2, . . . , x1 (reading from left to right) constructed by applying the blowup
algorithm in Section 4.1 to the given blowup sequence. We denote byWn(m) the extension
of Wn to the left obtained by applying the twisting algorithm in Section 4.3 based on the
k-tuplem. Note thatWn(m) is obtained fromWn by inserting additional marked points

yk, . . . , yk︸ ︷︷ ︸
mk

, yk−1, . . . , yk−1︸ ︷︷ ︸
mk−1

, . . . , y1, . . . , y1︸ ︷︷ ︸
m1

,

reading from left to right.

Vanishing cycles associated toWn(m): Now we can apply the method of Plamenevskaya
and Starkston (see Section 2) to the wiring diagramWn(m), to obtain the associated planar
Lefschetz fibration by describing a set of ordered vanishingcycles on the diskDk with k
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holes. According to their algorithm, there is a vanishing cycle associated to each marked
point inWn(m). So, for each1 ≤ t ≤ k − 1, there is a vanishing cycleV (xt) associated
to the marked pointxt in Wn(m), and for each1 ≤ s ≤ k, there is a vanishing cycleV (ys)
associated to the marked pointys in Wn(m). Note that there arek − 1 vanishing cycles
associated to typex marked points, and since eachyt is repeatedmt = bt − nt times, there
are

m1 +m2 + · · ·+mk = (b1 − n1) + (b2 − n2) + · · ·+ (bk − nk)

vanishing cycles in total associated to typey marked points.

Planar Lefschetz fibration Wp,q(n) → D2: Let Wp,q(n) be the minimal symplectic fill-
ing of (L(p, q), ξcan) as in Section 3.1. As we described in Section 3.2, there is a planar
Lefschetz fibrationWp,q(n) → D2 with fiberDk, which is obtained by applying the sta-
bilization algorithm and the surgery algorithm. Note that there arek − 1 vanishing cycles
α1, α2, . . . , αk−1 coming from the stabilization algorithm and

(b1 − n1) + (b2 − n2) + · · ·+ (bk − nk)

vanishing cycles
{γ1, . . . , γ1︸ ︷︷ ︸

b1−n1

, γ2, . . . , γ2︸ ︷︷ ︸
b2−n2

, . . . , γk, . . . γk︸ ︷︷ ︸
bk−nk

}

coming from the surgery algorithm.

Theorem 1 is in fact equivalent to Proposition 18 coupled with Lemma 11.

Proposition 18. LetWn(m) be an unbraided wiring diagram withk wires as described in
Definition 17. Then

(a) for any 1 ≤ s ≤ k, the vanishing cycleV (ys) associated to the marked pointys ∈
Wn(m) is isotopic toγs in Dk, and

(b) for any 1 ≤ t ≤ k − 1, the vanishing cycleV (xt) associated to the marked point
xt ∈ Wn(m) is isotopic toαt (the mirror image ofαt) in Dk.

In the rest of the article we will provide a proof of Proposition 18. In Section 5.2.1, we
will first formulate Proposition 24 (a necessarily very technical result) and Lemma 25 will
show that it implies Proposition 18(a). Then we will turn ourattention to Proposition 18(b)
in Section 5.2.2, where we will formulate the result as Proposition 26.

5.2.1. The case ofγ-curves: To prove our claim in Proposition 18, we will verify that for
1 ≤ s ≤ k, the vanishing cycleV (ys) is isotopic to the curveγs in Dk. We begin with a
simple but crucial observation.

Lemma 19. For any wiring diagramWn(m) with k wires as in Definition 17, and for any
1 ≤ s ≤ k, we have

V (ys) = ∆(x1) ◦ · · · ◦∆(xk−1)(δ(ys)).
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Proof. By Definition 8 we have

V (ys) = ∆(x1) ◦ · · · ◦∆(xk−1) ◦ (∆(y1))
b1−n1 ◦ · · · ◦ (∆(ys−1))

bs−1−ns−1(δ(ys)).

But
(∆(y1))

b1−n1 ◦ · · · ◦ (∆(ys−1))
bs−1−ns−1(δ(ys)) = δ(ys),

since the convex curves associated to the typey marked points are nested, due to the con-
struction and the order of the typey marked points in the wiring diagram. �

Therefore, to prove our claim in Proposition 18 (a), for each1 ≤ s ≤ k, we need to
verify that

∆(x1) ◦ · · · ◦∆(xk−1)(δ(ys)) = γs

by Definition 8 and Lemma 19. Equivalently, we need to verify that for each1 ≤ s ≤ k,

(∆(xk−1))
−1 ◦ · · · ◦ (∆(x1))

−1(γs) = δ(ys).

For technical reasons, we will prove a more refined statementin Proposition 24 from which
our claim will follow by Lemma 25. Before giving the statement we make the following
definition.

Definition 20. (Right/Left-convexity)A curve in a disk with holes enclosing two distinct
sets of adjacent holes as illustrated in Figure 19 is called right-convex, and the mirror im-
age of a right-convex curve is called left-convex. By definition any convex curve enclosing
a set of adjacent holes is both right-convex and left-convex.

0 ≤

FIGURE 19. A right-convex curve in a disk with holes.

Notation for the rest of the paper: During the proof, it will be convenient to keep track
of the number of wires in our wiring diagrams when talking about marked points. Thus
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we will write xki (resp.ykj ) when talking about the marked pointxi (resp. yj) in a wiring
diagram withk wires. Although this decoration will make the notation cumbersome, it is
necessary for the accuracy of the arguments, but the reader can safely ignore this superscript
for the most part in the text below. Similarly, when talking about curves and half-twists in
a disk with holes, it will be convenient to keep track of the number of holes. For example,
we will write γks when talking about the convex curveγs in the diskDk with k holes.
Moreover, the counterclockwise half-twist∆(xi) in Dk will be abbreviated by∆k

i and its
inverse, the clockwise half-twist, by(∆k

i )
−1. (Fortunately, we will not need to use∆(yj)

in our discussion below by Lemma 19, and hence the notation∆k
i will not lead to any

confusion.) Furthermore, we will denote theith hole (with respect to the geometric order
from top to bottom) inDk byHk

i . We will also need the following definitions.

Definition 21. For 2 ≤ s ≤ k, we denote byΓks the collection of red arcs inDk shown in
Figure 20, where we setΓk1 := ∅.

γks

Hk
s

Dk

FIGURE 20. Γks is the collection of red arcs.

Fix any wiring diagramWn with k wires andk− 1 marked pointsxkk−1, . . . , x
k
1 (reading

from left to right), as in Definition 17.

Definition 22. For 2 ≤ s ≤ k, let ρks be the smallestt ∈ {1, . . . , k − 1} such that the
convex curveδ(xkt ) ⊂ Dk assigned toxkt containsHk

s . For 1 ≤ s ≤ k and1 ≤ r ≤ k − 1,
we define

γks,r := (∆k
r)

−1 ◦ (∆k
r−1)

−1 ◦ · · · ◦ (∆k
1)

−1(γks ),

Γks,r :=

{
(∆k

r)
−1 ◦ (∆k

r−1)
−1 ◦ · · · ◦ (∆k

ρks
)−1(Γks) if s ≥ 2 and r ≥ ρks

Γks otherwise,

and setγks,0 := γks andΓks,0 := Γks .
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Note thatΓk1,r = ∅ for any0 ≤ r ≤ k − 1, by Definition 22.

Definition 23. We abbreviate

Ψk
r := (∆k

r)
−1 ◦ (∆k

r−1)
−1 ◦ · · · ◦ (∆k

1)
−1

for r ≥ 1 and setΨk
0 = id.

Proposition 24. Fix any wiring diagramWn with k wires andk − 1 marked pointsxkk−1,
. . . , xk1 (reading from left to right), as in Definition 17. Then the following three statements
hold for any1 ≤ s ≤ k, and1 ≤ r ≤ k − 1:

(L1) The curveγks,r is left or right-convex.
(L2) The sidedness of the convexity ofγks,r is opposite to that ofγks,r−1 if and only if the

convex curve assigned toxkr containsΨk
r−1(H

k
s ).

(L3) If s ≥ 2 and r ≥ ρks , thenΓks,r has one of the two forms shown in Figure 21. In
particular, the holes enclosed byγks,r can be split into two collections of adjacent
holes, which we will call “lobes” with the lobe containingΨk

r(H
k
s ) being called the

“primary lobe” and the other lobe the “secondary lobe”. We require Ψk
r(H

k
s ) to

be the innermost hole of the primary lobe and the intersection of Γks,r with a half-
plane containing the primary lobe to have precisely one of the two forms illustrated
in Figure 21. Whens = 1, we haveΓk1,r = ∅, for any0 ≤ r ≤ k − 1.

Lemma 25. Proposition 24 implies Proposition 18(a).

Proof. Lemma 13 implies that, for each1 ≤ s ≤ k, the tops wires according to their
geometric order on the right-hand side of a wiring diagram asdescribed in Definition 17
will be consecutive(perhaps with a different geometric order) on the left-handside as well.
Therefore, by definition, the convex curveδ(yks ) encloses the set of adjacent holes inDk

each of whose order is the same as the local geometric order ofone of theses wires on the
left-hand side of the diagram.

On the other hand, by definition, the convex curveγks encloses the tops holes inDk and
the set of images of these holes under(∆k

k−1)
−1 ◦ · · · ◦ (∆k

1)
−1 will be the same as the

set of adjacent holes enclosed byδ(yks ). To see this, imagine that each wire has a colour
and that each hole in the initial copy ofDk has a colour so that theith hole from the top
has the same colour as theith wire from the top on the right hand side. As the wires
move from right to left, they will be locally reordered each time a marked points appears
in the diagram. Similarly, the clockwise half-twist corresponding to that marked point will
reorder the holes on the diskDk. We set up our algorithm so that at each step the colour of
each wire remains the same as the colour of the correspondinghole.

Moreover, for each1 ≤ s ≤ k, we know by Proposition 24 that the curve

γks,k−1 := (∆k
k−1)

−1 ◦ · · · ◦ (∆k
1)

−1(γks )
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Dk Dk

γks,r

γks,r

0 ≤

≥ 0
Ψk
r(H

k
s )

Ψk
r(H

k
s )

FIGURE 21. Γks,r is the collection of red arcs in both forms in (L3).

is right or left-convex, but since it encloses a set ofadjacentholes, it must beconvex.
Therefore we conclude that for each1 ≤ s ≤ k, the convex curveγks,k−1 is isotopic to the
convex curveδ(yks ). �

Proof of Proposition 24.We will prove Proposition 24 by induction on the number of wires
in the wiring diagram. These three statements are vacuouslytrue for a wiring diagram with
one wire and no marked points. Now suppose thatk ≥ 2 and these statements hold for any
wiring diagram constructed using the blowup algorithm above withk − 1 wires andk − 2
marked points. We will prove that they hold for any wiring diagram withk wires andk− 1
marked pointsxkk−1, . . . , x

k
1 (reading from left to right), constructed as in Definition 17.

Our induction argument naturally splits into several cases.

Case I (Exterior blowup): This is the easiest case. Suppose that the last wirewk is
inserted into the diagram as a consequence of an exterior blowup so thatwk lies belowall
the wires and has no “interaction” with the other wires. Recall thatwk carries a free marked
pointxkk−1 which is placed geometrically to the left of all the previousmarked points in the
diagram.

Consider a fixed embedding ofDk−1 ⊂ Dk, whereDk−1 includes the topk − 1 holes in
Dk. In other wordsDk is obtained fromDk−1 by inserting an extra hole, namedHk

k by our
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conventions, at the bottom. Under this embedding, for any1 ≤ t ≤ k−2, the convex curve
δ(xk−1

t ) in Dk−1 can be identified with the convex curveδ(xkt ) in Dk, sincexkt = xk−1
t in

the new diagram. Similarly,∆k
t = ∆k−1

t for any1 ≤ t ≤ k − 2, under this embedding
and hence it follows that for1 ≤ s ≤ k − 1 and1 ≤ r ≤ k − 2 we haveγks,r = γk−1

s,r and
Γks,r = Γk−1

s,r , which proves by induction, that statements (L1), (L2) and (L3) hold for the
new wiring diagram withk wires, for these cases.

Note that the convex curveδ(xkk−1) is the curve that encloses the last holeHk
k ⊂ Dk, by

definition. Therefore, for1 ≤ s ≤ k − 1, the clockwise half-twist(∆k
k−1)

−1 has no effect
on theconvexcurveγks,k−2 nor on the collection of arcsΓks,k−2. Hence statements (L1), (L2)
and (L3) hold for1 ≤ s ≤ k − 1 andr = k − 1 as well in the new wiring diagram withk
wires.

Finally, we observe thatγkk,r = γkk is convex for eachr, hence (L1) and (L2) automati-
cally hold fors = k. Also,ρkk = k − 1 andΓkk,k−1 = (∆k

k−1)
−1(Γkk) has the form shown in

Figure 22, thus (L3) also holds fors = k.

γkk,k−1

Dk

FIGURE 22. Γkk,k−1 is the collection of red arcs.

Case II (Interior blowup) : Suppose that the last wirewk is introduced into the diagram
as a consequence of an interior blowup at theith term so thatwk is initially right below
the (i + 1)st wire with respect to thegeometric orderingof the wires on the right-hand
side of the diagram. Suppose that this(i + 1)st wire iswj. Now imagine that we take a
step back in our blowup algorithm. In other words, we delete the last wirewk (and the last
marked pointxkk−1 and the associated last twisting) from the diagram. At the same time we
remove thecorresponding holefrom Dk as follows. First we remove the(i + 2)nd hole
fromDk to obtain the rightmost copy ofDk−1. As we move from right to left in the wiring
diagram, every time we pass through a marked point, we have a new copy ofDk−1 obtained
by removing fromDk the hole whose order is the same as the local geometric order of the
wire wk. All these copies ofDk−1 can of course be identified with the rightmost copy
of Dk−1 and we use this observation in our induction argument below,where we proceed
according to three possible cases.
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Case II.A (Interior blowup, 1 ≤ s ≤ i): Suppose that1 ≤ s ≤ i. By hypothesis,γk−1
s,r

andΓk−1
s,r satisfy statements (L1), (L2) and (L3) onDk−1 for 1 ≤ r ≤ k−2. Now sinceγk−1

s

does not contain the holeHk−1
i+1 , by the assumption that1 ≤ s ≤ i, the imageΨk

r−1(H
k−1
i+1 )

is not contained inγk−1
s,r for 1 ≤ r ≤ k − 2. Therefore, we can insert back the hole we

deleted by splitting the imageΨk−1
r−1(H

k−1
i+1 ) into two adjacent holes. The new hole will be

inserted right belowHk−1
i+1 in the rightmost copy ofDk−1 and it will be inserted right below

or aboveΨk−1
r−1(H

k−1
i+1 ) in an alternating fashion every time we pass a marked point that

belongs to the intersectionwj ∩ wk. As a result, the superscriptk − 1 can be promoted to
k, meaning that the curveγk−1

s,r can be viewed asγks,r andΓk−1
s,r can be viewed asΓks,r, since

we have not modified them by the insertion of the new hole. Henceγks,r andΓks,r satisfy the
statements (L1), (L2) and (L3) onDk, for 1 ≤ r ≤ k − 2, as well.

To finish the proof of this case, we only need to argue thatγks,k−1 andΓks,k−1 satisfy
the statements (L1), (L2) and (L3). But by the discussion above γks,k−2 is right or left-
convex and belongs to the subdisk inDk along which we apply∆−1

k−1 corresponding to
the new marked pointxk−1, by our algorithm. Therefore, it is easy to see thatγks,k−1 =

(∆k
k−1)

−1(γks,k−2) andΓks,k−1 = (∆k
k−1)

−1(Γks,k−2) satisfy (L1), (L2) and (L3) as well.

Case II.B (Interior blowup, i+ 2 ≤ s ≤ k): Suppose thati + 2 ≤ s ≤ k. We check
that γks,r andΓks,r satisfy statements (L1), (L2) and (L3) for1 ≤ r ≤ k − 1. We will
proceed by induction onr. In the caser < ρks , the statements are trivial sinceγks,r = γks
andΓks,r = Γks in this case. Ifr = ρks , then, after applying the clockwise half-twist(∆k

r)
−1

to γks,r−1 = γks andΓks,r−1 = Γks , we see thatγks,r andΓks,r have the form given in Figure 23.
Thus statements (L1), (L2) and (L3) hold in this case also.

γk
s,ρks

Dk

FIGURE 23. Γk
s,ρks

is the collection of red arcs.
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Now suppose that statements (L1), (L2) and (L3) hold fork − 3 ≥ r = p ≥ ρks . We
check that the statements continue to hold forr = p + 1. For this first note that the convex
curveδ(xkp+1) encloses the holeΨk

p(H
k
s ) if and only if the convex curveδ(xk−1

p+1) encloses
the holeΨk−1

p (Hk−1
s−1 ). Indeed, ifs > i+2, then the wire in geometric positions on the right

hand side of the wiring diagram is wirewl for somel < k, since wirewk is in geometric
positioni + 2 on the right hand side. If we take a step back in our blowup algorithm, then
wire wl will have geometric positions − 1 on the right hand side of the wiring diagram,
now with k − 1 wires. Fors > i + 2, the result claimed now follows from the fact that
δ(xmp+1) encloses the holeΨm

p (H
m
t ) if and only if the wire in geometric positiont on the

right hand side of the diagram passes through the marked point xmp+1. If s = i + 2, then
the wire in geometric positions on the right hand side of the wiring diagram will be wire
wk. Since wirewk passes through each marked pointxkq that wirewj passes through for
1 ≤ q ≤ k − 2, otherwise remaining parallel towj, arguing as above, we obtain the same
result fors = i+ 2.

By hypothesis of the induction onr, it now follows that the curveγks,p will be right
or left-convex according to whetherγk−1

s−1,p is right or left-convex. Furthermore, the holes
thatγks,p encloses can be obtained from the holes thatγk−1

s−1,p encloses by splitting the hole
Ψk−1
p (Hk−1

i+1 ) into two adjacent holes.
In a similar way, the holes thatδ(xkp+1) encloses can be obtained from the holes that

δ(xk−1
p+1) encloses by splitting the holeΨk−1

p (Hk−1
i+1 ) into two adjacent holes. As a con-

sequence, the curveγks,p+1 = (∆k
p+1)

−1(γks,p) satisfies (L1) and (L2) and the holes that
γks,p+1 encloses can be obtained from the holes thatγk−1

s−1,p+1 encloses by splitting the hole
Ψk−1
p+1(H

k−1
i+1 ) into two adjacent holes.

We now show thatΓks,p+1 satisfies (L3) by considering the cases thatδ(xkp+1) encloses
and does not enclose the holeΨk

p(H
k
s ) separately. First suppose thatδ(xkp+1) does not

enclose the holeΨk
p(H

k
s ). Thenδ(xk−1

p+1) does not enclose the holeΨk−1
p (Hk−1

s−1 ). Assume
that γk−1

s−1,p is right-convex; the case thatγk−1
s−1,p is left-convex is similar. Thenγk−1

s−1,p+1 is
also right-convex and we have the following possibilities for δ(xk−1

p+1):
(i) δ(xk−1

p+1) is disjoint fromγk−1
s−1,p. In this caseδ(xk−1

p+1) cannot enclose a subset of holes
from the primary lobe ofγk−1

s−1,p, since otherwiseΓk−1
s−1,p+1 would fail to satisfy (L3). It

follows thatδ(xkp+1) is disjoint fromγks,p and that it does not enclose any subset of holes
from the primary lobe ofγks,p. ThusΓks,p+1 satisfies (L3).

(ii) δ(xk−1
p+1) intersectsγk−1

s−1,p and encloses at least one hole below the primary lobe of
γk−1
s−1,p. In this caseγk−1

s−1,p+1 would fail to be right-convex, which contradicts our induction
hypothesis. Hence this case cannot occur.
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(iii) δ(xk−1
p+1) intersectsγk−1

s−1,p and encloses at least one hole above the secondary lobe of
γk−1
s−1,p. In this case alsoγk−1

s−1,p+1 would fail to be right-convex, and hence this case also
cannot occur.

(iv) δ(xk−1
p+1) intersectsγk−1

s−1,p and encloses at least one hole below the secondary lobe of
γk−1
s−1,p. If δ(xk−1

p+1) does not enclose all the holes contained in the secondary lobe of γk−1
s−1,p,

then eitherγk−1
s−1,p+1 would have more than two “lobes” orΨk−1

r (Hk−1
s−1 ) would not be the

innermost hole of the primary lobe. Both of these cases contradict the induction hypothesis
hence they cannot occur. Thus the only possibility in this case is thatδ(xk−1

p+1) encloses
all the holes contained in the secondary lobe and at least onehole below it. This case is
illustrated in Figure 24(a). In this caseδ(xkp+1) will enclose all holes in the secondary lobe
of γks,p and enclose at least one hole below it. HenceΓks,p+1 will satisfy (L3) in this case
also. This concludes the analysis for the caseδ(xkp+1) not enclosing the holeΨk

p(H
k
s ).

Now suppose thatδ(xkp+1) encloses the holeΨk
p(H

k
s ). Thenδ(xk−1

p+1) encloses the hole
Ψk−1
p (Hk−1

s−1 ). Suppose thatγks,p is right-convex; again the left-convex case is similar. Then
γk−1
s−1,p is also right-convex. By the induction hypothesis, the image of γk−1

s−1,p under the
clockwise half-twist aboutδ(xk−1

p+1) must be left-convex and the image ofΓk−1
s−1,p must con-

tinue to satisfy (L3). In this case it can be checked that ifδ(xk−1
p+1) does not encloseγk−1

s−1,p,
then it must enclose all the holes of the secondary lobe (and no holes above it) and any
number of holes belowΨk−1

p (Hk−1
s−1 ); this situation is illustrated in Figure 24(b). Since, by

splitting vertically the holeΨk−1
p (Hk−1

i+1 ) into two adjacent holes, we obtainγks,p andδ(xkp+1)

from γk−1
s−1,p andδ(xk−1

p+1), respectively, it follows thatγks,p andδ(xkp+1) will have the same
form asγk−1

s−1,p andδ(xk−1
p+1), that is,δ(xkp+1) will encloseγks,p or it will enclose all the holes

of the secondary lobe (and no holes above it) and any number ofholes belowΨk
p(H

k
s ). It is

now clear that, after applying applying a clockwise half-twist aboutδ(xkp+1) to Γks,p, Γ
k
s,p+1

will continue to satisfy (L3).
We have thus checked thatγks,r andΓks,r satisfy (L1), (L2) and (L3) forr ≤ k − 2. We

now check that they satisfy (L1), (L2) and (L3) forr = k − 1 also.
As γk−1

s−1,k−2 will be in the left-most copy ofDk−1, by Lemma 13, all the holes enclosed
by γk−1

s−1,k−2 will be adjacent and the holeΨk−1
k−2(H

k−1
s−1 ) will be either at the top or the bottom

of these holes. Being one-sided convex (by the induction hypothesis), the curveγk−1
s−1,k−2

must be convex and hence the pair(γk−1
s−1,k−2,Γ

k−1
s−1,k−2) must be as in Figure 25. Thus the

curveγks,k−2 must also be convex as the holes it encloses are obtained fromthe holes that
γk−1
s−1,k−2 encloses by splittingΨk−1

k−2(H
k−1
i+1 ) into two adjacent holes. As the holes enclosed

by γks,k−1 must be adjacent with the holeΨk
k−1(H

k
s ) at one end (again, by Lemma 13), it

follows thatδ(xkk−1) must be disjoint fromγks,k−2. Hence the curveγks,k−1 will be convex
and statements (L1) and (L2) will hold forr = k − 1 also.
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(a) (b)

Dk Dk

δ(xk−1
p+1)

δ(xk−1
p+1)

FIGURE 24. Some possibilities forδ(xk−1
p+1).

To see that (L3) also holds forr = k − 1, first suppose thats > i + 2. ThenΨk
k−2(H

k
s )

will already be at the top or bottom of the holes enclosed byγks,k−2. As the last marked point
xkk−1 only involves the wires having the geometric positions{t | 1 ≤ t ≤ i+ 2, t 6= i+ 1}
on the right hand side, the last clockwise half-twist(∆k

k−1)
−1 will be about a subdisk that

does not encloseΨk
k−2(H

k
s ). It easily follows thatΓks,k−1 will satisfy (L3).

Now suppose thats = i + 2. Then the holeΨk
k−2(H

k
s ) will be either one below the top

hole or one above the bottom hole ofγks,k−2. The last clockwise half-twist will be about
a subdisk that encloses all the holes ofγks,k−2 except the holeΨk

k−2(H
k
i+1), which will be

at the top or the bottom. Again it follow thatΓks,k−1 will satisfy (L3). This completes the
proof of Case II.B.

Case II.C (Interior blowup, s = i+ 1): Suppose thats = i + 1. By the proof of
Case II.B, we know thatγki+2,r andΓki+2,r satisfy (L1), (L2) and (L3) for1 ≤ r ≤ k − 1.
Note that for1 ≤ r ≤ k − 2, the holesΨk

r(H
k
i+1) andΨk

r(H
k
i+2) will be adjacent, since

the wireswj andwk, having geometric positionsi+ 1 andi+ 2, respectively, on the right
hand side of the diagram, will remain consecutive up to the marked pointxk−1. Thus hole
Ψk
r(H

k
i+1) will be in the primary lobe ofγki+2,r for 1 ≤ r ≤ k − 2. It is now clear that

γki+1,r is given by isotopingγki+2,r over the holeΨk
r(H

k
i+2) from the side dictated byΓki+2,r

for 1 ≤ r ≤ k − 2; see Figure 26. It follows that statements (L1), (L2) and (L3) hold for
γki+1,r andΓki+1,r for 1 ≤ r ≤ k − 2.

For r = k − 1, we argue as follows: Sinceγk−1
i+1,k−2 will be convex with the hole

Ψk−1
k−2(H

k−1
i+1 ) at one end and the two holesΨk

r(H
k
i+1) andΨk

r(H
k
i+2) will be adjacent and

both in the primary lobe ofγki+2,k−2, the curveγki+1,k−2 must have one of the two forms
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γk−1
s−1,k−2 γk−1

s−1,k−2

Dk−1 Dk−1

FIGURE 25. One arc ofΓk−1
s−1,k−2 is shown in red.

γki+2,r

γki+2,r

γki+1,r

γki+1,r

FIGURE 26. The case when1 ≤ r ≤ k − 2.

given in Figure 27. It easily follows thatγki+1,k−1 andΓki+1,k−1 satisfy statements (L1), (L2)
and (L3). This completes the proof of Case II.C. �

5.2.2. The case ofα-curves: We reformulate our claim in Proposition 18 (b) aboutα-
curves as Proposition 26 below, where have we replacedWn(m) byWn, since the extension
from Wn to Wn(m) is irrelevant. Recall thatα denotes the mirror image of a given curve
α. In the following, we will decorate each curve with a superscript to indicate the number
of holes in the disk in which they are embedded. For example, we will useαkt to indicate
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γki+2,k−2
γki+2,k−2

Dk Dk

γki+1,k−2 γki+1,k−2

FIGURE 27. The case whenr = k − 1.

that we are talking about the curveαt (see Section 3.2.1) inDk. Similarly, we will decorate
each marked point in a wiring diagram with a superscript to indicate the number of wires
in the diagram.

Proposition 26. LetWn be a wiring diagram withk ≥ 2 wires andk − 1 marked points
xkk−1, . . . , x

k
1 (reading from left to right) constructed as in Definition 17 with respect to some

blowup sequence. Then, for each1 ≤ t ≤ k − 1, the vanishing cycleV (xkt ) associated to
the marked pointxkt via the method of Plamenevskaya and Starkston, is the mirrorimage
αkt of the curveαkt obtained by the stabilization algorithm described in Section 3.2.1 with
respect to the same blowup sequence.

Proof. According to Definition 8,V (xk1) = δ(xk1) andV (xkt ) = ∆k
1 ◦ · · · ◦∆

k
t−1(δ(x

k
t )) for

2 ≤ t ≤ k − 1. Therefore, we need to verify thatδ(xk1) = αk1 (both curves are convex and
αk1 = αk1) and∆k

1 ◦ · · · ◦∆
k
t−1(δ(x

k
t )) = αkt , for 2 ≤ t ≤ k − 1.

For k = 2, the wiring diagram has only two parallel wires and one marked pointx21 at
the bottom wire, corresponding to the initial blowup(0) → (1, 1). The statement holds for
this case sinceδ(x21) = α2

1. Now suppose thatk ≥ 3 and the statement holds for any wiring
diagram withk − 1 wires andk − 2 marked points, constructed as in Definition 17 with
respect to some blowup sequence. We will prove that the statement holds for any wiring
diagram withk wires andk − 1 marked points obtained by inserting one more wire and a
marked point corresponding to the new blowup.

Case I (Exterior blowup): This is the easiest case. Suppose that the new wirewk is
inserted to the diagram withk − 1 wires as a consequence of an exterior blowup so that
wk lies belowall the wires and has no “interaction” with the other wires. Recall thatwk
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carries a free marked pointxkk−1 which is placed geometrically to the left of all the previous
marked points in the diagram.

Consider a fixed embedding ofDk−1 ⊂ Dk, whereDk−1 includes the topk − 1 holes
in Dk. In other wordsDk is obtained fromDk−1 by inserting an extra hole, namedHk

k

by our conventions, at the bottom. It is clear that for any1 ≤ t ≤ k − 2, the convex
curveδ(xk−1

t ) ⊂ Dk−1 can be identified with the convex curveδ(xkt ) ⊂ Dk and hence
∆k
t = ∆k−1

t for any1 ≤ t ≤ k−2, under this embedding. Similarly, for any1 ≤ t ≤ k−2,
αkt can be identified withαk−1

t , by our stabilization algorithm in Section 3.2.1.
By induction, the property we want to verify holds for the wiring diagram withk−1wires

before we insertwk, i.e., we haveδ(xk−1
1 ) = αk−1

1 and∆k−1
1 ◦ · · · ◦∆k−1

t−1 (δ(x
k−1
t )) = αk−1

t ,

for 2 ≤ t ≤ k − 2. Under the embedding above, these can be upgraded toδ(xk1) = αk1 and
∆k

1 ◦ · · · ◦∆
k
t−1(δ(x

k
t )) = αkt , for 2 ≤ t ≤ k − 2, by simply replacing the superscriptk − 1

with k. The key point here is that the composition∆k
1 ◦ · · · ◦∆

k
t−1 takes place in the fixed

embedded diskDk−1 ⊂ Dk.
To finish the proof of this case, we only have to verify the statement fort = k − 1. Note

that δ(xkk−1) = αkk−1, which by definition, is the convex curve that encloses the last hole
Hk
k ⊂ Dk. We observe that

∆k
1 ◦ · · · ◦∆

k
k−2(δ(x

k
k−1)) = αkk−1

so that the “last” vanishing cycle isαkk−1 = αkk−1, which is consistent with our stabilization
algorithm in Section 3.2.1.

Case II (Interior blowup) : Now, suppose that the new wirewk is introduced into the
diagram withk − 1 wires as a consequence of an interior blowup at theith term so thatwk
is initially right below the(i+1)st wire with respect to thegeometric orderingof the wires
on the right-hand side of the diagram. Suppose this(i + 1)st wire iswj . Our proof below
splits into two subcases: the case where1 ≤ t ≤ k − 2, and the caset = k − 1.

Case II.A (Interior blowup, 1 ≤ t ≤ k − 2): Now, imagine that we take a step back in
our blowup algorithm. In other words, we delete the last wirewk (and the last marked point
xkk−1 and the associated last twisting) from the diagram. At the same time we remove the
corresponding holefrom Dk as follows. First we remove the(i + 2)nd hole fromDk to
obtain the rightmost copy ofDk−1. As we move from right to left in the wiring diagram,
every time we pass through a marked point, we have a new copy ofDk−1 obtained by
removing fromDk the hole whose order is the same as the local geometric order of the
wire wk. All these copies ofDk−1 can of course be identified with the rightmost copy of
Dk−1, in which by induction, we have

V (xk−1
t ) := ∆k−1

1 ◦ · · · ◦∆k−1
t−1 (δ(x

k−1
t )) = αk−1

t

for 2 ≤ t ≤ k − 2 andδ(xk−1
1 ) = αk−1

1 . We claim that we can upgrade the superscript
k − 1 to k in the previous sentence by splitting the(i + 1)st hole in (the rightmost copy
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of) Dk−1, to create a new hole right below it, and hence identifying the new disk asDk and
promoting the all the relevant curves fromDk−1 toDk. Note that this is precisely howαkt
is obtained fromαk−1

t by the stabilization algorithm in Section 3.2.1. We just need to show
thatV (xk−1

t ) can be promoted toV (xkt ) in the same manner, for each1 ≤ t ≤ k − 2. This
is easy to see fort = 1 since the convex curveδ(xk−1

1 ) can be promoted to the convex curve
δ(xk1) by inserting a hole inDk−1 either enclosed byδ(xk1) or not depending on whetherxk1
(which is in fact the same marked pointxk−1

1 ) belongs towj or not.
For 2 ≤ t ≤ k − 2, we argue as follows. In the aforementioned copies ofDk−1, there

is a hole whose order is the same as the local geometric order of the wirewj. Since, by
the blowup algorithm, the wireswj andwk are geometrically consecutive throughout the
diagram (except when they intersect) the corresponding twoholes will be adjacent inDk,
interchanging their relative order at each intersection point of wj andwk (which is indeed
a marked point in the diagram). Moreover, for each1 ≤ t ≤ k − 2, the convex curveδ(xkt )
assigned toxkt will either enclose both or neither of these holes, depending on whetherxkt
belongs towj or not. Therefore, for each2 ≤ t ≤ k − 2, any one of the curves

δ(xkt ), ∆
k
t−1(δ(x

k
t )), . . . , ∆

k
1 ◦ · · · ◦∆

k
t−1(δ(x

k
t ))

obtained iteratively by applying counterclockwise half-twists starting from the convex curve
δ(xkt ), will either enclose both or neither of these two holes. Thisimplies that we could just
upgrade the curves

δ(xk−1
t ), ∆k−1

t−1 (δ(x
k−1
t )), . . . , ∆k−1

1 ◦ · · · ◦∆k−1
t−1 (δ(x

k−1
t ))

from Dk−1 to Dk by inserting a new hole (corresponding to the local geometric position
of the new wirewk) in each copy ofDk−1. Note that the new hole corresponding to the
new wirewk can be viewed as being obtained by splitting the hole corresponding towj at
each step. We observe that this new hole will appear right below the(i + 1)st hole in the
rightmost copy ofDk−1 givingDk, and these two holes in question are enumerated asHk

i+1

andHk
i+2 in the rightmost copy ofDk. This “splitting” of the(i + 1)st hole is the crux of

the matter in our stabilization algorithm in Section 3.2.1.
The upshot of this discussion is that for1 ≤ t ≤ k − 2, the vanishing cycleV (xkt ) is

the curveαkt , which is in fact nothing butαk−1
t upgraded toDk from Dk−1, in a manner

consistent with our stabilization algorithm in Section 3.2.1. Finally, the caset = k− 1 will
be treated separately below.

Case II.B (Interior blowup, t = k − 1): To finish the proof of Proposition 26, we just
have to verify that the “last” vanishing cycleV (xkk−1) is the curveαkk−1. Equivalently,
we need to verify thatΨk

k−2(α
k
k−1) = δ(xkk−1), whereΨk

k−2 = (∆k
k−2)

−1 ◦ · · · ◦ (∆k
1)

−1, by
Definition 23. Here,instead of induction, we will rather use the statement in Proposition 18
(a) forγi+1, which we already proved.
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The standing assumption in Case II is that the new wirewk is introduced into the diagram
with k−1 wires as a consequence of an interior blowup at theith term so thatwk is initially
right below the(i + 1)st wire with respect to thegeometric orderingof the wires on the
right-hand side of the diagram. Suppose that this(i + 1)st wire, labelledwj , has an odd
number of marked points. The case with an even number of points is very similar and is
left to the interested reader.

On the left in Figure 28, we depict the convex curvesδ(yki+1) andδ(xkk−1). This con-
figuration can be deduced from the proof of Lemma 13 for the case whenwj has an odd
number of marked points. Fors = i+ 1, Proposition 18 (a) implies that

δ(yki+1) = Ψk
k−1(γ

k
i+1) = (∆k

k−1)
−1Ψk

k−2(γ
k
i+1)

and we set(γki+1)
′ = ∆k

k−1(δ(y
k
i+1)) = Ψk

k−2(γ
k
i+1), which is depicted on the right in

Figure 28.

δ(yki+1)

∆k
k−1

(γki+1)
′δ(xkk−1)

βk
ψ(i+2)

Dk
Dk

FIGURE 28. The curve(γki+1)
′ = ∆k

k−1(δ(y
k
i+1)).

Let βki+1 be the convex curve in Figure 29 enclosing the holesHk
i+1 andHk

i+2 and let
∆k
βi+1

denote the counterclockwise half-twist in the subdisk bounded byβki+1. Note that in
Dk, we haveαkk−1 = ∆k

βi+1
(γki+1) as one can see from Figure 29.

Hence we have

(1) Ψk
k−2(α

k
k−1) = Ψk

k−2 ◦∆
k
βi+1

(γki+1) = ∆k
βψ(i+2)

◦Ψk
k−2(γ

k
i+1) = ∆k

βψ(i+2)
((γki+1)

′),

whereβkψ(i+2) is defined as follows: The image of the curveβki+1 underΨk
k−2 is the con-

vex curveβkψ(i+2) (depicted on the right in Figure 28) enclosing two adjacent holes whose
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αkk−1

γki+1

βki+1

Dk

Hk
i+2

FIGURE 29. The curvesγki+1, β
k
i+1, andαkk−1 in Dk.

geometric orders are given as{ψ(i+ 2), ψ(i+ 2) + 1}. Here∆k
βψ(i+2)

denotes the counter-

clockwise half-twist in the subdisk bounded byβkψ(i+2).
Note that the order of the purple coloured hole depicted in the copy ofDk carrying

(γki+1)
′ in Figure 28 isψ(i + 2), and the blue hole right below it has orderψ(i + 2) + 1.

In fact,ψ(i + 2) is the local geometric order of the wirewk, andψ(i + 2) + 1 is the local
geometric order of the wirewj, before the last twisting. Recall that these two wires are
always geometrically consecutive and they swap their ordereach time they intersect.

In the second equality in (1) above, we used the fact that

Ψk
k−2 ◦∆

k
βi+1

◦ (Ψk
k−2)

−1 = ∆k
βψ(i+2)

which can be easily verified.
Finally, applying∆k

βψ(i+2)
(on the subdisk bounded byβkψ(i+2) enclosing only the blue

and the purple holes) to(γki+1)
′ in Figure 28 we get the dashed curveδ(xkk−1). Therefore,

coupled with (1), we conclude thatΨk
k−2(α

k
k−1) = δ(xkk−1). �

5.3. Proofs of the corollaries and some examples.

Proof of Corollary 2.According to Theorem 1, for each Stein fillingWp,q(n) of the contact
3-manifold (L(p, q), ξcan), there is an (unbraided) wiring diagramWn(m), constructed as
in Definition 17, based on the blowup sequence(0) → (1, 1) → · · · → n andm = b − n,
whose associated planar Lefschetz fibrationf : W → D2 obtained by the method of
Plamenevskaya and Starkston [10, Section 5.2] is equivalent to the one constructed by
the authors [2]. Moreover, using [10, Proposition 5.5], thewiring diagramWn(m), viewed
as a collection of intersecting curves inR× C, can be extended to an explicit collection of
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symplectic graphical disksΓ1, . . . ,Γn in C × C, with marked pointsp1, . . . , pm ∈
⋃
i Γi

including all the intersection points of these disks. Note that we can assume that each in-
tersection of these disks is positive and transverse, and non-intersection points are allowed
as free marked points. Furthermore, by [10, Proposition 5.6], the Stein fillingWp,q(n) is
supported by the restriction of the Lefchetz fibration

πx ◦ Π: C2#mCP 2 \ (Γ̃1 ∪ · · · ∪ Γ̃n) → C

to a Milnor ball (to get compact fibers), whereπx : C2 → C denotes the projection onto the
first coordinate,̃Γ1, . . . , Γ̃n are the proper transforms ofΓ1, . . . ,Γn, andΠ is the blowup
map. Finally, the Lefschetz fibrationsf andπx ◦Π are equivalent by the discussion in [10,
Section 5.4]. Note that the last statement in Corollary 2 follows immediately from [10,
Proposition 5.8]. �

Proof of Corollary 3.LetWp,q(n) be the Stein filling of(L(p, q), ξcan), and letWn(m) be
the (unbraided) wiring diagram constructed as in Definition17 based on the blowup se-
quence(0) → (1, 1) → · · · → n andm = b − n. LetΓ = Γ1 ∪ · · · ∪ Γn be the collection
of symplectic graphical disks, with marked pointsp1, . . . , pm ∈ Γ as in Corollary 2. Note
that the incidence matrixIn(m) := I(Γ, {pj}) can be read off from the wiring diagram
Wn(m), where each wirewi is identified with the diskΓi and thex- andy-type marked
points are identified withp1, . . . , pm.

To compute the incidence matrixIn(m), we enumerate the wires from top to bottom
with respect to theirgeometricorder on the right-hand side of the diagramWn(m), and
we enumerate thex- andy-type marked points using their natural geometric order from
right to left. The matrixIn(m) can be viewed as an extension of the incidence matrixIn

corresponding to the wiring diagramWn, which carries only thex-type marked points. In
the following, first we inductively constructIn depending on the blowup sequence(0) →
(1, 1) → · · · → n, starting from the matrix

x1( )
w1 0
w2 1

corresponding to the wiring diagram with two wiresw1, w2 and one marked pointx1, ob-
tained by the initial blowup(0) → (1, 1). Suppose that we have constructed ther× (r−1)
incidence matrix for a wiring diagram withr wires andr − 1 marked pointsx1, . . . , xr−1.
Assume that we insert the next wirewr+1 into the diagram according to an exterior blowup.
Then we “blowup the incidence matrix” at hand by adding a lastrow and a last column
which consist of all zeros except a1 at the lower right corner, to obtain the(r + 1) × r

incidence matrix.
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Now assume that the last wirewr+1 is inserted into the diagram according to an interior
blowup at theith term. Then we blowup the incidence matrix at hand byinsertinga new
row below the(i + 1)st row and a last column so that the new row is copied from the row
above and the last column is of the form

[1, . . . , 1︸ ︷︷ ︸
i

, 0, 1, 0, . . . , 0︸ ︷︷ ︸
≥0

]T

to obtain the(r + 1)× r incidence matrix.
The matrixIn(m) can be obtained fromIn in a standard way based only on thek-tuple

m. To extendIn to In(m), for each1 ≤ s ≤ k, we just insert a column labelled withys, so
that the firsts entries from the top of the column labelled withys is 1, and the rest are0. If
ys has multiplicityms, then we repeatms-times the column labelled withys. �

Here we illustrate the proof of Corollary 3 for the wiring diagram in Figure 14. The
incidence matrixIn can be obtained algorithmically from the blowup sequence(1, 1) →
(1, 2, 1) → (2, 1, 3, 1) → (2, 1, 4, 1, 2) = n used to constructWn as follows.

x1( )
w1 0
w2 1

exterior
−−−→
blowup

x1 x2( )
w1 0 0

w2 1 0

w3 0 1

interior
−−−→
blowup

x1 x2 x3





w1 0 0 1

w2 1 0 0

w4 1 0 1

w3 0 1 0

interior
−−−→
blowup

x1 x2 x3 x4





w1 0 0 1 1

w2 1 0 0 1

w4 1 0 1 1

w3 0 1 0 0

w5 0 1 0 1

The first arrow above corresponds to an exterior blowup, where we insert the last row
and the last column which has a1 in the corner and0 everywhere else. The second arrow
corresponds to an interior blowup at the first term, and we insert the third row and the last
column so that the first two entries in the third row are copiedform the row above and
the entries in the last column are1, 0, 1, 0 from the top. The last arrow corresponds to an
interior blowup at the third term, and we insert the fifth row and the last column so that the
first two entries in the third row are copied form the row aboveand the entries in the last
column are1, 1, 1, 0, 1 from the top.

Let m = (0, 1, 1, 1, 1). To extend the5 × 4 incidence matrixIn for Wn to the5 × 8
incidence matrixIn(m) for Wn(m), we insert the columns labelled withy2, y3, y4, y5 where
the firsts entries from the top of the column labelled withys is 1, and the rest are0.
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x1 x2 x3 x4 y2 y3 y4 y5





w1 0 0 1 1 1 1 1 1
w2 1 0 0 1 1 1 1 1
w4 1 0 1 1 0 1 1 1
w3 0 1 0 0 0 0 1 1
w5 0 1 0 1 0 0 0 1

= In(m)

Proof of Corollary 4.A matrixM with r ≥ 2 rows

vi = (vij), vij ∈ {0, 1}

is called a CQS matrix (see [5, Definition 6.8]) if〈vi, vj〉 = 〈vi, vi〉 − 1 holds for all
1 ≤ i < j ≤ r, where〈·, ·〉 denotes the standard inner product, and CQS stands for cyclic
quotient singularity.

LetX be a cyclic quotient singularity whose singularity link is(L(p, q), ξcan). Accord-
ing to [5, Theorem 6.18], there is a bijection between the smoothing components ofX and
incidence matrices of the picture deformations of the decorated curve(C, l) with smooth
branches representingX. Moreover, the incidence matrices are in one-to-one correspon-
dence with CQS matrices, up to permutations of the columns.

Let IRn (m) be the matrix obtained fromIn(m) by reversing the order of the rows. As in
[5, Lemma 6.11], one can check thatIRn (m) is a CQS matrix and that there is a bijection
between CQS matrices and the set of matrices of the formIRn (m). The reason that we had
to reverse the order of the rows of the matrixIn(m) is simply because in the present paper,
to constructIn(m), we enumerated the wires inWn(m) from top to bottom, as opposed to
bottom to top, with respect to their geometric order on the right-hand side of the diagram.

Finally, we give an explicit one-to-one correspondence between the Stein fillings of the
contact singularity link(L(p, q), ξcan) and the Milnor fibers of the associated cyclic quotient
singularity. LetWp,q(n) be the Stein filling given by Lisca obtained by the blowup sequence
(0) → (1, 1) → · · · → n. Using the same blowup sequence andm = b − n, we can
construct a CQS matrixIRn (m) as in the proof of Corollary 3, which corresponds to a
picture deformation, and hence gives a Milnor fiber as in [5].The Stein fillingWp,q(n) is
diffeomorphic to the Milnor fiber, because while the wiring diagramWn(m) determines
Wp,q(n), the picture deformation, which is in the same combinatorial equivalence class as
the configuration of symplectic graphical disks arising fromWn(m), determines the Milnor
fiber.

Conversely, for any Milnor fiber, which is obtained from a picture deformation whose
incidence matrix is a CQS matrix, one can read off the pair(n,m) as in [5, Proposition
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6.12], and therefore construct the wiring diagramWn(m), so that the configuration of sym-
plectic graphical disks arising fromWn(m), is in the same combinatorial equivalence class
as the picture deformation. �

Proof of Corollary 5. It is well-known that for any contact singularity link(L(p, q), ξcan),
the Milnor fiber of the Artin smoothing component of the corresponding cyclic quotient
singularity gives the Stein fillingW(p,q)((1, 2, . . . , 2, 1)), which is Stein deformation equiv-
alent to the one obtained by deforming the symplectic structure on the minimal resolution
of the singularity; see [3].

We describe a decorated germ(C, l) associated to the pair of coprime integersp > q ≥ 1
such that(C, l) determines the cyclic quotient singularity with linkL(p, q) via the con-
struction of de Jong and van Straten [5]. We follow the description given in [8]. Suppose
that p

q
= [a1, . . . , am]. LetG be the decorated linear graph havingm verticesv1, . . . , vm

with the vertexvi weighted by the integer−ai. ThenG is the dual resolution graph of a
cyclic quotient singularity with linkL(p, q). LetG′ be the simple graph obtained fromG
by attachinga1 − 1 new vertices tov1 andai − 2 new vertices to each vertexvi for i > 1.
Assign weight−1 to each new vertex. Finally, letG′′ denote the graph obtained fromG′′ by
endowing an arrowhead to each new vertex. ThenG′′ is an embedded resolution graph of
a germ of a plane curveC =

⋃
i Ci with smoothirreducible components corresponding to

the arrowheads inG′′. The order of intersection ofCi andCj corresponding to two distinct
arrows is the number of vertices on the intersection of the geodesics between the arrows
andvm. Also l = (li), where the weightli is the number of vertices on the geodesic from
the arrowhead corresponding toCi to vm.

Now every continued fraction expansion[c1, . . . , cm], with ci ≥ 2 for all i, can be ob-
tained from[2] by repeated applications of the following two operations:

(i) [a1, . . . , ar] 7→ [a1, . . . , ar + 1],
(ii) [a1, . . . , ar] 7→ [a1, . . . , ar, 2].

Let [b1, . . . , bs] denote the dual string of[a1, . . . , ar], i.e. if p

q
= [a1, . . . , ar], then p

p−q
=

[b1, . . . , bs]. Then the dual string changes for each of these two operations in the following
way:

(i) [b1, . . . , bs] 7→ [b1, . . . , bs, 2],
(ii) [b1, . . . , bs] 7→ [b1, . . . , bs + 1].

This follow immediately from a consideration of Riemenschneider’s point diagrams. We
check that if the statement of the corollary holds for a pair(p, q) with p

q
= [a1, . . . , ar],

then it continues to hold if we replace(p, q) by (p′, q′), where p′

q′
= [a1, . . . , ar + 1] or

p′

q′
= [a1, . . . , ar, 2]. As the statement holds trivially ifp

q
= [2], by induction, it will follow

that the statement holds for every pair of coprime integersp > q ≥ 1.
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Suppose first thatp
′

q′
= [a1, . . . , ar + 1]. Then we have p′

p′−q′
= [b1, . . . , bs, 2], where

[b1, . . . , bs] =
p

p−q
. Notice that in the wiring diagram for the planar Lefschetz fibration

W(p,q)((1, 2, . . . , 2, 1)) → D2

constructed according to Theorem 1, there is a final marked point ys through which all the
wires pass. It is easy to see that that the wiring diagram for the planar Lefschetz fibration
W(p′,q′)((1, 2, . . . , 2, 1)) → D2 is given by taking the wiring diagram for the planar Lef-
schetz fibrationW(p,q)((1, 2, . . . , 2, 1)) → D2 and inserting a new wirews+1 at the bottom
of the diagram on the right hand side, which runs under the wiring diagram up to the point
that it passes through the marked pointys (turning it into ays+1-type marked point) and
then runs above the diagram. In addition, a single new markedpoint is placed on the new
wirews+1.

Let (C, l) denote the decorated curve associated to the pair of integers (p, q) constructed
as above. ThenC will consist of s curvettas by the induction hypothesis. Let(C′, l′) de-
note the decorated curve associated to the pair(p′, q′). Then it is easy to see thatC′ can
be obtained fromC by adding an extra curvettaCs+1 which has intersection multiplicity
1 with each curvettaCi, i ≤ s. In addition,l′ is given by settingl′i = li for i ≤ s and
ls+1 = 2. Since the Scott deformation of(C, l) is combinatorially equivalent to the sym-
plectic disk arrangement associated to the wiring diagram for W(p,q)((1, 2, . . . , 2, 1)) (by
the induction hypothesis), it is easy to see that the Scott deformation of(C′, l′) is combina-
torially equivalent to the symplectic disk arrangement associated to the wiring diagram for
W(p′,q′)((1, 2, . . . , 2, 1)).

Now suppose thatp
′

q′
= [a1, . . . , ar, 2]. Then we have p′

p′−q′
= [b1, . . . , bs+1]. In this case,

the wiring diagram associated toW(p′,q′)((1, 2, . . . , 2, 1)) can be obtained from the wiring
diagram associated toW(p,q)((1, 2, . . . , 2, 1)) by adding one new simultaneous intersection
pointys of all the wires. Also the decorated curve(C′, l′) associated to the pair(p′, q′) can
be obtained from the decorated curve(C, l) by increasing by1 the order of intersection
between each pair of distinct curvettasCi andCj and by increasing eachli by 1. Again it
is easy to check that the Scott deformation of(C′, l′) is combinatorially equivalent to the
symplectic disk arrangement associated to the wiring diagram forW(p′,q′)((1, 2, . . . , 2, 1)).

�

In the following we give an example to illustrate the proof ofCorollary 5. Note that the
Stein fillingW(p,q)((1, 2, . . . , 2, 1)) is obtained via the sequence ofexteriorblowups

(0) → (1, 1) → (1, 2, 1) → · · · → (1, 2, . . . , 2, 1),

and the corresponding unbraided wiring diagram can be drawneasily. The wiring diagram
corresponding toW(56,17)((1, 2, 2, 2, 1)), for instance, is depicted in Figure 30.
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FIGURE 30. Wiring diagram for the Stein fillingW(56,17)((1, 2, 2, 2, 1))—
the symplectic resolution.

Next, we show that the arrangement of symplectic disks arising from the wiring diagram
in Figure 30 is combinatorially equivalent to the Scott deformation of(C, l). First we note
that 56

17
= [4, 2, 2, 4, 2] and construct the curve(C, l), as depicted in Figure 31.

Note that(C, l) consists of five curvettas with indicated weights and tangencies using the
notation in [10], where boxed numbers indicate the weights,circled numbers indicate the
tangencies, and the other numbers are the self-intersection numbers of the rational curves.

We also depicted the Scott deformation of(C, l) at the bottom in Figure 31. It follows
that, after enumerating the smooth branches of the Scott deformation of(C, l) from top
to bottom as they appear on the right-hand side, the incidence matrix arising from the
Scott deformation coincides with the incidence matrix arising from the wiring diagram in
Figure 30. Note that each branch of the Scott deformation(C, l) includes a free marked
point. The5 × 10 incidence matrixIArtin := In(m), wheren = (1, 2, 2, 2, 1) andm =
(1, 0, 3, 0, 2), is given as follows.

x1 x2 x3 x4 y1 y3 y3 y3 y5 y5





w1 0 0 0 0 1 1 1 1 1 1
w2 1 0 0 0 0 1 1 1 1 1
w3 0 1 0 0 0 1 1 1 1 1
w4 0 0 1 0 0 0 0 0 1 1
w5 0 0 0 1 0 0 0 0 1 1

= IArtin

Finally, one can easily obtain thedisjoint vanishing cycles inD5 of the planar Lefschetz
fibrationW(56,17)((1, 2, 2, 2, 1)) → D2, which we depicted in Figure 32. As observed in
[10], this Lefschetz fibration agrees with the Lefschetz fibration constructed by Gay and
Mark [6], using the plumbing descriptionW(56,17)((1, 2, 2, 2, 1)) given by the dual resolu-
tion graph.

Note that the total monodromy of the planar Lefschetz fibrationW(56,17)((1, 2, 2, 2, 1)) →
D2, the product of Dehn twists along the disjoint vanishing cycles depicted in Figure 32, is
the monodromy of the open book compatible with(L(56, 17), ξcan). This monodromy has
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FIGURE 31. From dual resolution graph of a cyclic quotient singularity to
the Scott deformation of the decorated plane curve representing the singu-
larity.



UNBRAIDED WIRING DIAGRAMS FOR STEIN FILLINGS OF LENS SPACES 47

FIGURE 32. The vanishing cycles of the planar Lefschetz fibration
W(56,17)((1, 2, 2, 2, 1)) → D2.

another positive factorization

D(γ5)D(γ4)D(γ3)D(γ2)D(α4)D(α3)D(α2)D(α1),

which is the total monodromy of the planar Lefschetz fibration W(56,17)((2, 1, 4, 1, 2)) →
D2 we discussed in Section 5.1.
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